Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor | |
from diffusers.utils import load_image | |
import os,sys | |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
# from diffusers import UNet2DConditionModel, AutoencoderKL | |
from diffusers import AutoencoderKL | |
from kolors.models.unet_2d_condition import UNet2DConditionModel | |
from diffusers import EulerDiscreteScheduler | |
from PIL import Image | |
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
def infer( ip_img_path, prompt ): | |
ckpt_dir = f'{root_dir}/weights/Kolors' | |
text_encoder = ChatGLMModel.from_pretrained( | |
f'{ckpt_dir}/text_encoder', | |
torch_dtype=torch.float16).half() | |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half() | |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half() | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained( f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16) | |
ip_img_size = 336 | |
clip_image_processor = CLIPImageProcessor( size=ip_img_size, crop_size=ip_img_size ) | |
pipe = StableDiffusionXLPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=clip_image_processor, | |
force_zeros_for_empty_prompt=False | |
) | |
pipe = pipe.to("cuda") | |
pipe.enable_model_cpu_offload() | |
if hasattr(pipe.unet, 'encoder_hid_proj'): | |
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj | |
pipe.load_ip_adapter( f'{root_dir}/weights/Kolors-IP-Adapter-Plus' , subfolder="", weight_name=["ip_adapter_plus_general.bin"]) | |
basename = ip_img_path.rsplit('/',1)[-1].rsplit('.',1)[0] | |
ip_adapter_img = Image.open( ip_img_path ) | |
generator = torch.Generator(device="cpu").manual_seed(66) | |
for scale in [0.5]: | |
pipe.set_ip_adapter_scale([ scale ]) | |
# print(prompt) | |
image = pipe( | |
prompt= prompt , | |
ip_adapter_image=[ ip_adapter_img ], | |
negative_prompt="", | |
height=1024, | |
width=1024, | |
num_inference_steps= 50, | |
guidance_scale=5.0, | |
num_images_per_prompt=1, | |
generator=generator, | |
).images[0] | |
image.save(f'{root_dir}/scripts/outputs/sample_ip_{basename}.jpg') | |
if __name__ == '__main__': | |
import fire | |
fire.Fire(infer) | |