GPT2-trained-scratch / model_file.py
Manu101's picture
Upload 4 files
dc0d378 verified
raw
history blame
12.7 kB
import torch
import tiktoken
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
@dataclass
class GPTConfig:
block_size: int = 1024 # this is max sequence len
vocab_size: int = 50304 # 50257 # total vocab including 256 bytes + 1 special token (<|endoftext|>) and 1000-257 BPE merges
n_layer: int = 12 # number of layers
n_head: int = 12 # total number of attention heads
n_embd: int = 768 # embedding dimension
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
n_head = config.n_head
n_embd = config.n_embd
assert n_embd % n_head == 0
# query, key, value prjections all combined
self.c_attn = nn.Linear(n_embd, 3 * n_embd)
# output projection, after `v` is already multiplied with attention_scores
self.c_proj = nn.Linear(n_embd, n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
block_size = config.block_size
self.register_buffer('bias', torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
self.n_embd = n_embd
self.n_head = n_head
def forward(self, x):
B, T, C = x.size() # batch_size, sequence_len, embedding_dim (n_embd)
# total dim = n_head * head_size
# example GPT2 has 12 heads with each hs = 64 thus C= 12*64 = 768
qkv = self.c_attn(x) # get combined qkv matix B, T, n_embd * 3(768*3=2304)
q, k, v = qkv.split(self.n_embd, dim=2) # each item gets n_embd size, dimension against two
# b, seq, n_embd -> b, seq, n_heads, head_size -> b, n_heads, seq_len, head_size
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# final-> bs, n_heads, seq_len, mini-n_head_embd
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# # print(f"shape of q: {q.shape}... shape of k : {k.shape}")
# attn = (q @ k.transpose(-2, -1))/(math.sqrt(k.shape[-1]))
# # apply masked fill at places where mask ==0, remember tril is lower triangle
# attn = attn.masked_fill(mask = self.bias[ : , : , :T, :T] == 0, value=float('-inf'))
# attn = F.softmax(attn, dim=-1)
# y = attn @ v # B, n_heads, T/seq, T @ B, n_heads, T/Seq, head_size) -> B, n_heads, T, head_size
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
# transpose y to merge all n_heads. B, n_heads, T, head_size -> transpose B, T, n_heads, head_size -> view B, T, Channel_size/n_emb 768
y = y.transpose(1, 2).contiguous().view(B, T, C)
# out projection, B, T, C -> B, T, C
y = self.c_proj(y)
return y
def generate(self, prompt):
if not isinstance(prompt, str) or len(prompt) == 0:
return "Say something!"
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd)
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing
self.transformer.wte.weight = self.lm_head.weight
# weight initialization
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size() # batch , seq_len
# check if incoming seq_len of idx is within limits
assert T <= self.config.block_size, f"Cannot proceed as your Sequence len : {T} is more than {self.config.block_size}"
# forward for token and position encodings
# shape (T)
pos = torch.arange(0, T, dtype=torch.int32, device=idx.device)
pos_emb = self.transformer.wpe(pos) # position embds of shape (T, n_embd)
token_emb = self.transformer.wte(idx) # token embds of shape (Batch, T/seq_len, n_embd)
x = pos_emb + token_emb
# now forward through transformer blocks
for block in self.transformer.h:
x = block(x)
# pass through final layernorm
x = self.transformer.ln_f(x)
# pass through final LM_HEAD
logits = self.lm_head(x) # shape (Batch_size, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def configure_optimizers(self, weight_decay, learning_rate, device_type):
# start with all of the candidate parameters (that require grad)
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
class DataLoaderLite:
def __init__(self, B, T, process_rank, num_processes):
self.B = B
self.T = T
self.process_rank = process_rank
self.num_processes = num_processes
with open('input.txt', 'r') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode(text)
self.tokens = torch.tensor(tokens)
print(f'loaded len : {len(self.tokens)}')
# print(f'1 epoch = {len(self.tokens)//(B*T)} batches ')
self.current_position = self.B * self.T * self.process_rank
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position: self.current_position + (B * T) + 1]
y = buf[1:].view(B, T)
x = buf[:-1].view(B, T)
self.current_position += (B * T * self.num_processes)
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
self.current_position = self.B * self.T * self.process_rank
return x, y
def get_model():
model = GPT(GPTConfig())
return model
# cuda = torch.cuda.is_available()
# torch.set_float32_matmul_precision('high')
# max_lr = 6e-4
# min_lr = 0.1 * max_lr
# warmup_steps = 10
# max_steps = 5000
# def get_lr(iteration):
# if iteration < warmup_steps:
# return max_lr * (iteration + 1) / warmup_steps
# if iteration > max_steps:
# return min_lr
# decay_ratio = (iteration - warmup_steps) / (max_steps - warmup_steps)
# assert 0<= decay_ratio <= 1
# coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
# return min_lr + coeff * (max_lr - min_lr)
# model = GPT(GPTConfig()).to(device=device)
# model = torch.compile(model, mode='default')
# if ddp:
# print("\n\n====================================\nDDP")
# model = DDP(module=model,device_ids=[ddp_local_rank])
# raw_model = model.module if ddp else model
# # optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4, betas=(0.9, 0.95), eps=1e-8)
# optimizer = raw_model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device)
# total_batch_size = 524288
# B = 16
# T = 1024
# assert total_batch_size % (B * T * ddp_world_size) == 0, "just to make sure total batch size is divisible by B*T"
# grad_accumulation_steps = total_batch_size // (B * T * ddp_world_size)
# if master_process:
# print(f"\nGradient accumulation steps needed with B: {B} and T: {T} for total batch size: {total_batch_size} = {grad_accumulation_steps}")
# print(f"total params: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
# train_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size)
# # torch.cuda.amp.autocast(enabled=True)
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cudnn.allow_tf32 = True
# log_dir = "logs"
# os.makedirs(log_dir, exist_ok=True)
# start= time.time()
# for step in range(max_steps):
# t0 = time.time()
# optimizer.zero_grad()
# loss_mini = 0.0
# for micro_step in range(grad_accumulation_steps):
# x, y = train_loader.next_batch()
# x, y = x.to(device=device), y.to(device)
# with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
# logits, loss = model(x, y)
# # if i == 0:
# # assert logits.dtype == torch.bfloat16
# # assert loss.dtype == torch.float32
# # assert model.transformer.wte.weight.dtype == torch.float32
# loss = loss/grad_accumulation_steps
# loss_mini += loss.detach()
# if ddp:
# model.require_backward_grad_sync = (micro_step == grad_accumulation_steps - 1)
# loss.backward()
# if ddp:
# dist.all_reduce(loss_mini, op=dist.ReduceOp.AVG)
# if master_process and step%50==0 and step > 100:
# print(f"saving at: {step}")
# checkpoint_path = os.path.join(log_dir, f"model_{step:05d}.pt")
# checkpoint = {
# 'model': raw_model.state_dict(),
# 'config': raw_model.config,
# 'step': step
# }
# torch.save(checkpoint, checkpoint_path)
# # grad clip
# norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# lr = get_lr(step)
# for param_group in optimizer.param_groups:
# param_group['lr'] = lr
# optimizer.step()
# torch.cuda.synchronize()
# t1 = time.time()
# dt = (t1 - t0)
# tokens_per_sec = (train_loader.B * train_loader.T * grad_accumulation_steps * ddp_world_size) / (dt)
# if master_process:
# # print happens via CPU, hence wait (synchronize GPU)
# print(f'step : {step+1} | loss: {loss_mini.item()} | lr: {lr:.7f} | dt: {dt* 1000:.2f} ms | tokens/sec: {tokens_per_sec:_.6f} | norm: {norm:.2f}')
# end = time.time()
# print("final loss: ", loss*grad_accumulation_steps)
# print(f"total time: {end - start} seconds")
# torch.save(model.state_dict(), "5k-run-new-DDP.pt")
# if ddp:
# destroy_process_group()