Spaces:
Sleeping
Sleeping
import torch | |
import tiktoken | |
import inspect | |
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
class GPTConfig: | |
block_size: int = 1024 # this is max sequence len | |
vocab_size: int = 50304 # 50257 # total vocab including 256 bytes + 1 special token (<|endoftext|>) and 1000-257 BPE merges | |
n_layer: int = 12 # number of layers | |
n_head: int = 12 # total number of attention heads | |
n_embd: int = 768 # embedding dimension | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
n_head = config.n_head | |
n_embd = config.n_embd | |
assert n_embd % n_head == 0 | |
# query, key, value prjections all combined | |
self.c_attn = nn.Linear(n_embd, 3 * n_embd) | |
# output projection, after `v` is already multiplied with attention_scores | |
self.c_proj = nn.Linear(n_embd, n_embd) | |
self.c_proj.NANOGPT_SCALE_INIT = 1 | |
block_size = config.block_size | |
self.register_buffer('bias', torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size)) | |
self.n_embd = n_embd | |
self.n_head = n_head | |
def forward(self, x): | |
B, T, C = x.size() # batch_size, sequence_len, embedding_dim (n_embd) | |
# total dim = n_head * head_size | |
# example GPT2 has 12 heads with each hs = 64 thus C= 12*64 = 768 | |
qkv = self.c_attn(x) # get combined qkv matix B, T, n_embd * 3(768*3=2304) | |
q, k, v = qkv.split(self.n_embd, dim=2) # each item gets n_embd size, dimension against two | |
# b, seq, n_embd -> b, seq, n_heads, head_size -> b, n_heads, seq_len, head_size | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
# final-> bs, n_heads, seq_len, mini-n_head_embd | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
# # print(f"shape of q: {q.shape}... shape of k : {k.shape}") | |
# attn = (q @ k.transpose(-2, -1))/(math.sqrt(k.shape[-1])) | |
# # apply masked fill at places where mask ==0, remember tril is lower triangle | |
# attn = attn.masked_fill(mask = self.bias[ : , : , :T, :T] == 0, value=float('-inf')) | |
# attn = F.softmax(attn, dim=-1) | |
# y = attn @ v # B, n_heads, T/seq, T @ B, n_heads, T/Seq, head_size) -> B, n_heads, T, head_size | |
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention | |
# transpose y to merge all n_heads. B, n_heads, T, head_size -> transpose B, T, n_heads, head_size -> view B, T, Channel_size/n_emb 768 | |
y = y.transpose(1, 2).contiguous().view(B, T, C) | |
# out projection, B, T, C -> B, T, C | |
y = self.c_proj(y) | |
return y | |
def generate(self, prompt): | |
if not isinstance(prompt, str) or len(prompt) == 0: | |
return "Say something!" | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
self.gelu = nn.GELU(approximate='tanh') | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
self.c_proj.NANOGPT_SCALE_INIT = 1 | |
def forward(self, x): | |
x = self.c_fc(x) | |
x = self.gelu(x) | |
x = self.c_proj(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = nn.LayerNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = nn.LayerNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.transformer = nn.ModuleDict( | |
dict( | |
wte=nn.Embedding(config.vocab_size, config.n_embd), | |
wpe=nn.Embedding(config.block_size, config.n_embd), | |
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f=nn.LayerNorm(config.n_embd) | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
# weight sharing | |
self.transformer.wte.weight = self.lm_head.weight | |
# weight initialization | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
std = 0.02 | |
if hasattr(module, 'NANOGPT_SCALE_INIT'): | |
std *= (2 * self.config.n_layer) ** -0.5 | |
torch.nn.init.normal_(module.weight, mean=0.0, std=std) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None): | |
B, T = idx.size() # batch , seq_len | |
# check if incoming seq_len of idx is within limits | |
assert T <= self.config.block_size, f"Cannot proceed as your Sequence len : {T} is more than {self.config.block_size}" | |
# forward for token and position encodings | |
# shape (T) | |
pos = torch.arange(0, T, dtype=torch.int32, device=idx.device) | |
pos_emb = self.transformer.wpe(pos) # position embds of shape (T, n_embd) | |
token_emb = self.transformer.wte(idx) # token embds of shape (Batch, T/seq_len, n_embd) | |
x = pos_emb + token_emb | |
# now forward through transformer blocks | |
for block in self.transformer.h: | |
x = block(x) | |
# pass through final layernorm | |
x = self.transformer.ln_f(x) | |
# pass through final LM_HEAD | |
logits = self.lm_head(x) # shape (Batch_size, T, vocab_size) | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss | |
def configure_optimizers(self, weight_decay, learning_rate, device_type): | |
# start with all of the candidate parameters (that require grad) | |
param_dict = {pn: p for pn, p in self.named_parameters()} | |
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} | |
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. | |
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. | |
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] | |
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] | |
optim_groups = [ | |
{'params': decay_params, 'weight_decay': weight_decay}, | |
{'params': nodecay_params, 'weight_decay': 0.0} | |
] | |
num_decay_params = sum(p.numel() for p in decay_params) | |
num_nodecay_params = sum(p.numel() for p in nodecay_params) | |
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") | |
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") | |
# Create AdamW optimizer and use the fused version if it is available | |
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters | |
use_fused = fused_available and device_type == "cuda" | |
print(f"using fused AdamW: {use_fused}") | |
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused) | |
return optimizer | |
class DataLoaderLite: | |
def __init__(self, B, T, process_rank, num_processes): | |
self.B = B | |
self.T = T | |
self.process_rank = process_rank | |
self.num_processes = num_processes | |
with open('input.txt', 'r') as f: | |
text = f.read() | |
enc = tiktoken.get_encoding('gpt2') | |
tokens = enc.encode(text) | |
self.tokens = torch.tensor(tokens) | |
print(f'loaded len : {len(self.tokens)}') | |
# print(f'1 epoch = {len(self.tokens)//(B*T)} batches ') | |
self.current_position = self.B * self.T * self.process_rank | |
def next_batch(self): | |
B, T = self.B, self.T | |
buf = self.tokens[self.current_position: self.current_position + (B * T) + 1] | |
y = buf[1:].view(B, T) | |
x = buf[:-1].view(B, T) | |
self.current_position += (B * T * self.num_processes) | |
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens): | |
self.current_position = self.B * self.T * self.process_rank | |
return x, y | |
def get_model(): | |
model = GPT(GPTConfig()) | |
return model | |
# cuda = torch.cuda.is_available() | |
# torch.set_float32_matmul_precision('high') | |
# max_lr = 6e-4 | |
# min_lr = 0.1 * max_lr | |
# warmup_steps = 10 | |
# max_steps = 5000 | |
# def get_lr(iteration): | |
# if iteration < warmup_steps: | |
# return max_lr * (iteration + 1) / warmup_steps | |
# if iteration > max_steps: | |
# return min_lr | |
# decay_ratio = (iteration - warmup_steps) / (max_steps - warmup_steps) | |
# assert 0<= decay_ratio <= 1 | |
# coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) | |
# return min_lr + coeff * (max_lr - min_lr) | |
# model = GPT(GPTConfig()).to(device=device) | |
# model = torch.compile(model, mode='default') | |
# if ddp: | |
# print("\n\n====================================\nDDP") | |
# model = DDP(module=model,device_ids=[ddp_local_rank]) | |
# raw_model = model.module if ddp else model | |
# # optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4, betas=(0.9, 0.95), eps=1e-8) | |
# optimizer = raw_model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device) | |
# total_batch_size = 524288 | |
# B = 16 | |
# T = 1024 | |
# assert total_batch_size % (B * T * ddp_world_size) == 0, "just to make sure total batch size is divisible by B*T" | |
# grad_accumulation_steps = total_batch_size // (B * T * ddp_world_size) | |
# if master_process: | |
# print(f"\nGradient accumulation steps needed with B: {B} and T: {T} for total batch size: {total_batch_size} = {grad_accumulation_steps}") | |
# print(f"total params: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") | |
# train_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size) | |
# # torch.cuda.amp.autocast(enabled=True) | |
# torch.backends.cuda.matmul.allow_tf32 = True | |
# torch.backends.cudnn.allow_tf32 = True | |
# log_dir = "logs" | |
# os.makedirs(log_dir, exist_ok=True) | |
# start= time.time() | |
# for step in range(max_steps): | |
# t0 = time.time() | |
# optimizer.zero_grad() | |
# loss_mini = 0.0 | |
# for micro_step in range(grad_accumulation_steps): | |
# x, y = train_loader.next_batch() | |
# x, y = x.to(device=device), y.to(device) | |
# with torch.autocast(device_type='cuda', dtype=torch.bfloat16): | |
# logits, loss = model(x, y) | |
# # if i == 0: | |
# # assert logits.dtype == torch.bfloat16 | |
# # assert loss.dtype == torch.float32 | |
# # assert model.transformer.wte.weight.dtype == torch.float32 | |
# loss = loss/grad_accumulation_steps | |
# loss_mini += loss.detach() | |
# if ddp: | |
# model.require_backward_grad_sync = (micro_step == grad_accumulation_steps - 1) | |
# loss.backward() | |
# if ddp: | |
# dist.all_reduce(loss_mini, op=dist.ReduceOp.AVG) | |
# if master_process and step%50==0 and step > 100: | |
# print(f"saving at: {step}") | |
# checkpoint_path = os.path.join(log_dir, f"model_{step:05d}.pt") | |
# checkpoint = { | |
# 'model': raw_model.state_dict(), | |
# 'config': raw_model.config, | |
# 'step': step | |
# } | |
# torch.save(checkpoint, checkpoint_path) | |
# # grad clip | |
# norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) | |
# lr = get_lr(step) | |
# for param_group in optimizer.param_groups: | |
# param_group['lr'] = lr | |
# optimizer.step() | |
# torch.cuda.synchronize() | |
# t1 = time.time() | |
# dt = (t1 - t0) | |
# tokens_per_sec = (train_loader.B * train_loader.T * grad_accumulation_steps * ddp_world_size) / (dt) | |
# if master_process: | |
# # print happens via CPU, hence wait (synchronize GPU) | |
# print(f'step : {step+1} | loss: {loss_mini.item()} | lr: {lr:.7f} | dt: {dt* 1000:.2f} ms | tokens/sec: {tokens_per_sec:_.6f} | norm: {norm:.2f}') | |
# end = time.time() | |
# print("final loss: ", loss*grad_accumulation_steps) | |
# print(f"total time: {end - start} seconds") | |
# torch.save(model.state_dict(), "5k-run-new-DDP.pt") | |
# if ddp: | |
# destroy_process_group() | |