File size: 19,344 Bytes
c717908
 
 
 
 
172704c
 
c717908
 
 
172704c
 
c717908
172704c
 
 
 
 
 
 
 
c717908
 
 
 
 
 
 
 
 
 
172704c
c717908
 
 
 
f0aee62
c717908
172704c
c717908
 
172704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c717908
 
 
 
 
 
 
172704c
c717908
172704c
 
c717908
 
172704c
 
c717908
172704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c717908
 
 
 
172704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c717908
172704c
c717908
172704c
 
c717908
 
172704c
 
c717908
172704c
 
c717908
172704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c717908
172704c
 
048f44b
c717908
172704c
 
 
 
4e2f594
172704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c717908
172704c
 
c717908
172704c
 
c717908
172704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a8a58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172704c
 
 
 
 
c717908
172704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c717908
172704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a839728
 
 
 
 
 
 
172704c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a839728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172704c
 
 
 
 
 
158460f
a839728
7205406
172704c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import streamlit as st
import pandas as pd
import numpy as np
import seaborn as sns
from PIL import Image
import io  
import mlflow
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from matplotlib.backends.backend_agg import FigureCanvasAgg
from sklearn import metrics
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.tree import DecisionTreeRegressor
from sklearn.preprocessing import LabelEncoder
import graphviz
import missingno as mno
from sklearn.tree import export_graphviz



st.sidebar.header("Dashboard")
st.sidebar.markdown("---")
app_mode = st.sidebar.selectbox('Select Page',['Introduction','Visualization','Prediction'])

df = pd.read_csv("transactions_dataset.csv")
tech_df = df.loc[df['sector'] == 'TECH']


# - - - - - - - - - - - INTRODUCTION - - - - - - - - - - -
if app_mode == "Introduction":

  st.title("Introduction")
  st.markdown("### Welcome to our ESG rankings Dashboard!")
  st.markdown("Team Members: Jen Martinez, Oscar Tepepan-Aviles, Elsy Bonilla Aguilar")

  st.image("ESG_image.png", use_column_width=True)


  st.markdown("## Environmental - Social - Governance")
  st.markdown("##### Does ESG rankings truly effect company investment & returns?")
  
  st.markdown("""
  ##### Objective:
  - Our goal is to explore a companies profit margin ratio relative to ESG Rankings to make a positive feedback loop
  """)
  
  st.markdown("##### Approach:")
  st.markdown("""
  1. Data Exploration
      - Shape, outliers, nulls
  2. Comprehensive Variable Analysis
      - Univariate Analysis
      - Bi-variate analysis
      - Multi-variate analysis
  3. Modelling
      - Build model that solves business problem 
  """)

  # - - - - - - - - - - - - - - - - - -

  st.markdown("<hr>", unsafe_allow_html=True)

  st.markdown("### About the Data Set")
  
  num = st.number_input('How many rows would you like to see?', 5, 10)

  head = st.radio('View from top (head) or bottom (tail)', ('Head', 'Tail'))
  if head == 'Head':
    st.dataframe(df.head(num))
  else:
    st.dataframe(df.tail(num))

  st.text(f'This data frame has {df.shape[0]} Rows and {df.shape[1]} columns')

  
  st.markdown("\n\n##### About the Variables")
  st.dataframe(df.describe())

  st.markdown("\n\n### Missing Values")
  st.markdown("Are there any Null or NaN?")

  # Calculate percentage of missing values
  dfnull = tech_df.isnull().sum() / len(tech_df) * 100
  total_miss = dfnull.sum().round(2)
  
  # Display percentage of total missing values
  st.write("Percentage of total missing values:", total_miss, "%")
  
  # Create two columns layout
  col1, col2 = st.columns(2)
  
  # Display DataFrame with missing value percentages in the first column
  with col1:
      st.write("Percentage of Missing Values:")
      st.write(dfnull)
  
  # Display Missing Values Matrix in the second column
  with col2:
      st.write("Missing Values Matrix:")
      fig, ax = plt.subplots(figsize=(20, 6))
      mno.matrix(tech_df, ax=ax)
      st.pyplot(fig)
  
  if total_miss <= 30:
    st.success("This Data set is reliable to use with small amounts of missing values, thus yielding accurate data.")
  else:
    st.warning("Poor data quality due to greater than 30 percent of missing value.")
    st.markdown(" > Theoretically, 25 to 30 percent is the maximum missing values are allowed, there's no hard and fast rule to decide this threshold. It can vary from problem to problem.")

# - - - - - - - - - - - VISUALIZATION - - - - - - - - - - -
elif app_mode == "Visualization":
  data = {
    'ESG_ranking': tech_df['ESG_ranking'],
    'PS_ratio': tech_df['PS_ratio'],
    'PB_ratio': tech_df['PB_ratio'],
    'roa_ratio': tech_df['roa_ratio'],
  }
  
  df = pd.DataFrame(data)
  
  # Define weights for each metric
  weights = {
      'ESG_ranking': 0.3,
      'PS_ratio': 0.2,
      'PB_ratio': 0.3,
      'roa_ratio': 0.2
  }

  data = {
    'ESG_ranking': tech_df['ESG_ranking'],
    'PS_ratio': tech_df['PS_ratio'],
    'PB_ratio': tech_df['PB_ratio']
  }
  
  df = pd.DataFrame(data)
  
  # Create interaction terms
  tech_df['ESG_PS_interaction'] = tech_df['ESG_ranking'] * tech_df['PS_ratio']
  tech_df['ESG_PB_interaction'] = tech_df['ESG_ranking'] * tech_df['PB_ratio']
  tech_df['PS_PB_interaction'] = tech_df['PS_ratio'] * tech_df['PB_ratio']
  
  
  # Calculate the composite score
  tech_df['Composite_Score'] = sum(tech_df[col] * weights[col] for col in weights)

  cols = ['ESG_ranking', 'Volatility_Buy',  'Sharpe Ratio', 'inflation','PS_ratio','NetProfitMargin_ratio', 'PB_ratio', 'roa_ratio', 'roe_ratio','EPS_ratio','Composite_Score',  'ESG_PS_interaction',  'ESG_PB_interaction',  'PS_PB_interaction' ] 

  # - - - - - - - - - - - - PAIRPLOT
  
  st.title("Visualization")
  
  # DATA VISUALISATION
  tab1, tab2, tab3 = st.tabs(["Pair Plots", "Correlation", "Feature Engineering"])

  # DF defenition
  tech_df = tech_df.sample(n=10000)

  # - - - - - - - - - - - - - - -  TAB1
  image_paths = ['bigger_pairplot.png', 'Annoted_bigger_sns.png', 'smaller_pairplot.png']
  messages = ["#### All variable pairplot", "#### Notable Relationships", "#### Focus Point Variables"]
  
  # Display the initial image and message
  tab1.title("PAIR PLOTS")
  tab1.write(messages[0])
  tab1.image(image_paths[0], use_column_width=True)
  
  button = tab1.button("Next Pair Plot")
  if button:
    tab1.write(messages[1])
    tab1.image(image_paths[1], use_column_width=True)
  button2 = tab1.button('Next Pair Plot ')
  if button2:
    tab1.write(messages[2])
    tab1.image(image_paths[2], use_column_width=True)

  var = tab1.button('Variables')
  if var:
      tab1.markdown("##### ESG_ranking - Volatility_Buy - Sharpe Ratio inflation - PS_ratio - NetProfitMargin_ratio - PB_ratio - roa_ratio - roe_ratio -EPS_ratio")

  
  # - - - - - - - - - - - - - - TAB 2

  tab2.title('Variable Correlation')
  tab2.markdown("##### ESG_ranking - Volatility_Buy - Sharpe Ratio inflation - PS_ratio - NetProfitMargin_ratio - PB_ratio - roa_ratio - roe_ratio -EPS_ratio")

  # HEAT MAP
  tab2.markdown('### Heatmap Correlation')
  
  # heat map code
  cols = ['ESG_ranking', 'Volatility_Buy',  'Sharpe Ratio', 'inflation','PS_ratio','NetProfitMargin_ratio', 'PB_ratio', 'roa_ratio', 'roe_ratio','EPS_ratio'] # possible essential columns
  corrMatrix = tech_df[cols].corr()
  
  fig2, ax = plt.subplots()
  sns.heatmap(corrMatrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
  
  # Display the plot within the Streamlit app
  tab2.pyplot(fig2)

  
  # -- DESCRIBE TABLES -- 
  tab2.markdown('Differences of ESG Rankings')

  # Grouping based on condition
  high_rank = tech_df.groupby(tech_df['ESG_ranking'] > tech_df['ESG_ranking'].mean())

  # Get the group with ESG_ranking greater than the mean
  high_rank_group = high_rank.get_group(True)

  # Display summary statistics for the group
  tab2.subheader("Summary statistics for high ESG ranking group:")
  tab2.write(high_rank_group.describe())

  # Get the group with ESG_ranking less than or equal to the mean
  low_rank_group = high_rank.get_group(False)

  # Display summary statistics for the group
  tab2.subheader("Summary statistics for low ESG ranking group:")
  tab2.write(low_rank_group.describe())

  # --  HISTOGRAMS --
  tab2.subheader('Histograms')
  
  # Create subplots
  fig, axes = plt.subplots(2, 2, figsize=(12, 8))
  
  # Plot histograms
  sns.histplot(tech_df['ESG_ranking'], kde=True, ax=axes[0, 0])
  axes[0, 0].set_title('Histogram of ESG Ranking')
  
  sns.histplot(tech_df['PS_ratio'], kde=True, ax=axes[0, 1])
  axes[0, 1].set_title('Histogram of PS Ratio')
  
  sns.histplot(tech_df['PB_ratio'], kde=True, ax=axes[1, 0])
  axes[1, 0].set_title('Histogram of PB Ratio')
  
  sns.histplot(tech_df['roa_ratio'], kde=True, ax=axes[1, 1])
  axes[1, 1].set_title('Histogram of ROA Ratio')
  
  # Adjust layout
  plt.tight_layout()
  
  # Display the plot in Streamlit
  tab2.pyplot(fig)

   # -- BAR PLOTS --
  fig, axes = plt.subplots(1, 4, figsize=(16, 8))
  
  # Plot bar charts
  sns.barplot(x='ESG_ranking', y='Volatility_sell', data=tech_df, ax=axes[0])
  axes[0].set_title('Average stock sell by Group')
  
  sns.barplot(x='ESG_ranking', y='expected_return (yearly)', data=tech_df, ax=axes[1])
  axes[1].set_title('Average returns by Group')
  
  sns.barplot(x='ESG_ranking', y='NetProfitMargin_ratio', data=tech_df, ax=axes[2])
  axes[2].set_title('Average profits by Group')
  
  sns.barplot(x='ESG_ranking', y='Volatility_Buy', data=tech_df, ax=axes[3])  # Swapped 'Volatility_Buy' with 'Volatility_sell'
  axes[3].set_title('Average stock buy by Group')
  
  # Adjust layout
  plt.tight_layout()
  
  # Display the plot in Streamlit
  tab2.pyplot(fig)

    # Bar Charts
  tab2.subheader('Bar Charts')
  
  # Create subplots
  fig, axes = plt.subplots(1, 4, figsize=(12, 6))
  
  # Plot bar charts
  sns.barplot(x='ESG_ranking', y='PS_ratio', data=tech_df, ax=axes[0])
  axes[0].set_title('Average PS Ratio by Group')
  
  sns.barplot(x='ESG_ranking', y='PB_ratio', data=tech_df, ax=axes[1])
  axes[1].set_title('Average PB Ratio by Group')
  
  sns.barplot(x='ESG_ranking', y='roa_ratio', data=tech_df, ax=axes[2])
  axes[2].set_title('Average ROA Ratio by Group')
  
  sns.barplot(x='ESG_ranking', y='Volatility_sell', data=tech_df, ax=axes[3])  # Swapped 'Volatility_Buy' with 'Volatility_sell'
  axes[3].set_title('Average stock sell by Group')
  
  # Adjust layout
  plt.tight_layout()
  
  # Display the plot in Streamlit
  tab2.pyplot(fig)

   # Box Plots
  tab2.subheader('Box Plots')
  
  # Create subplots
  fig, axes = plt.subplots(1, 4, figsize=(12, 6))
  
  # Plot box plots
  sns.boxplot(y='ESG_ranking', data=tech_df, ax=axes[0])
  axes[0].set_title('Box Plot of ESG Ranking')
  
  sns.boxplot(y='PS_ratio', data=tech_df, ax=axes[1])
  axes[1].set_title('Box Plot of PS Ratio')
  
  sns.boxplot(y='PB_ratio', data=tech_df, ax=axes[2])
  axes[2].set_title('Box Plot of PB Ratio')
  
  sns.boxplot(y='roa_ratio', data=tech_df, ax=axes[3])
  axes[3].set_title('Box Plot of ROA Ratio')
  
  # Adjust layout
  plt.tight_layout()
  
  # Display the plot in Streamlit
  tab2.pyplot(fig)
  
  
  # - - - - - - - - - - - - - - TAB 3
  tab3.title('Feature(Data) Engineering')
  tab3.markdown(  """
  1. ***ESG Ranking:***
      - This metric reflects a company's ESG performance - better sustainability practices.
  2. ***PS Ratio (Price-to-Sales Ratio)***:
      - This ratio compares a company's market capitalization to its total sales revenue - it indicates how much investors  are willing to pay for each dollar of sales generated by the company.
  3. ***PB Ratio (Price-to-Book Ratio)***:
      - The PB ratio compares a company's market value to its book value - indicating how much investors are willing to pay for each dollar of assets.
  4. ***ROA Ratio (Return on Assets Ratio):***
      - This ratio measures a company's profitability relative to its total assets - it indicates how efficiently a company is generating profits from its assets.
  #### Interaction Terms:
    - ***ESG-PS Interaction:***
        - The interaction between ESG ranking and PS ratio captures how a company's sustainability practices may influence its price-to-sales ratio. ESG-PB Interaction: This interaction captures how a company's ESG performance may impact its price-to-book ratio. It helps assess whether sustainability practices influence investors' perceptions of a company's value relative to its assets.
    - ***PS-PB Interaction:***
        - This interaction explores the relationship between price-to-sales and price-to-book ratios. It provides insights  into how investors weigh sales revenue and asset value when evaluating a company's stock.
    - ***Composite Score:***
        - The composite score combines the weighted contributions of ESG ranking, PS ratio, PB ratio, and possibly other metrics. It offers a holistic assessment of a company's overall performance and sustainability. A higher composite score indicates better overall performance based on the chosen metrics and weights.
      """  )

  # -- new table -- 
  tab3.write(tech_df)
  
# - - - - - - - - - - - PREDICTION - - - - - - - - - - -
elif app_mode == "Prediction":
  st.title("Predictions")
  
  cols = ['ESG_ranking', 'Volatility_Buy',  'Sharpe Ratio', 'inflation','PS_ratio','NetProfitMargin_ratio', 'PB_ratio', 'roa_ratio', 'roe_ratio','EPS_ratio'] # possible essential columns
  temp_df = df[cols]
  # Get list of all variable names
  label_encoder = LabelEncoder()
  for name in list(cols):
    temp_df[name] = label_encoder.fit_transform(temp_df[name])
  
  # Select the target variable for prediction
  y = temp_df['NetProfitMargin_ratio']

  # Select predictors (all other variables except the target variable)
  X = temp_df.drop(columns=['NetProfitMargin_ratio'])

  # Split the data into training and testing sets
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

  # Fit linear regression model
  model = LinearRegression()
  model.fit(X_train, y_train)

  # Make predictions
  y_pred = model.predict(X_test)
  results_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
  
  # Display the subheader
  st.subheader('Actual vs. Predicted for Net Profit Margin ratio (Linear Regression)')
  
  # Create a new Matplotlib figure and axis
  fig, ax = plt.subplots()
  
  # Scatter plot
  scatter_plot = sns.scatterplot(x='Actual', y='Predicted', data=results_df, ax=ax)
  scatter_plot.set_title('Actual vs. Predicted for NetProfitMargin_ratio')
  scatter_plot.set_xlabel('Actual')
  scatter_plot.set_ylabel('Predicted')

  # Regression line plot
  sns.regplot(x='Actual', y='Predicted', data=results_df, scatter=False, color='red', ax=ax)
  
  # Display the plot within the Streamlit app
  st.pyplot(fig)
  
  mse = metrics.mean_squared_error(y_test, y_pred)
  r2_score = metrics.r2_score(y_test, y_pred)

  st.write(f"Mean Squared Error: {mse}")
  st.write(f"R-squared: {r2_score}")
  st.write("------------------------------------")

# - - - - - - - - - - - - - - DECISION TREE REGRESSOR
  st.subheader('Decision Tree Regressor')

  # Define columns
  cols = ['ESG_ranking', 'Volatility_Buy',  'Sharpe Ratio', 'inflation', 'PS_ratio', 'NetProfitMargin_ratio',
          'PB_ratio', 'roa_ratio', 'roe_ratio', 'EPS_ratio']
  
  # Filter dataframe based on selected columns
  temp_df = tech_df[cols]
  
  # Split features and target variable
  X = temp_df.drop(["NetProfitMargin_ratio"], axis=1)
  y = temp_df["NetProfitMargin_ratio"]
  
  # Split dataset into training set and test set
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
  
  # Create Decision Tree Regressor object
  clf = DecisionTreeRegressor(max_depth=3)
  
  # Train Decision Tree Regressor
  clf.fit(X_train, y_train)
  
  # Predict the response for test dataset
  y_pred = clf.predict(X_test)
  
  # Calculate metrics
  mse = metrics.mean_squared_error(y_test, y_pred)
  r2_score = metrics.r2_score(y_test, y_pred)
  
  # Display MSE and R2 score
  st.write(f"MSE: {mse}")
  st.write(f"R2 Score: {r2_score}")
  
  # Plot decision tree
  st.graphviz_chart(export_graphviz(clf, out_file=None, feature_names=X.columns, filled=True, rounded=True))

  # - - - - - - - - - - - - - - - - - PYCARET
  st.subheader('Pycaret Setup')

  data = {
    'Description': ['Session id', 'Target', 'Target type', 'Original data shape', 'Transformed data shape',
                    'Transformed train set shape', 'Transformed test set shape', 'Numeric features',
                    'Preprocess', 'Imputation type', 'Numeric imputation', 'Categorical imputation',
                    'Transform target', 'Transform target method', 'Fold Generator', 'Fold Number',
                    'CPU Jobs', 'Use GPU', 'Log Experiment', 'Experiment Name', 'USI'],
    'Value': [2557, 'NetProfitMargin_ratio', 'Regression', '(92401, 10)', '(92401, 10)', '(64680, 10)',
              '(27721, 10)', 9, True, 'simple', 'mean', 'mode', True, 'yeo-johnson', 'KFold', 10, -1,
              False, False, 'test1', '08d7']
  }
  
  df = pd.DataFrame(data)

  # Display DataFrame as a table
  st.table(df)


  st.subheader('Best Models - Pycaret/MLFlow')

  # Create a DataFrame from the given data
  data = {
      'Model': ['knn', 'rf', 'et', 'lightgbm', 'xgboost', 'dt', 'gbr', 'ada', 'br', 'ridge',
                'lr', 'huber', 'en', 'lasso', 'llar', 'par', 'omp', 'dummy', 'lar'],
      'Algorithm': ['K Neighbors Regressor', 'Random Forest Regressor', 'Extra Trees Regressor',
                    'Light Gradient Boosting Machine', 'Extreme Gradient Boosting', 'Decision Tree Regressor',
                    'Gradient Boosting Regressor', 'AdaBoost Regressor', 'Bayesian Ridge', 'Ridge Regression',
                    'Linear Regression', 'Huber Regressor', 'Elastic Net', 'Lasso Regression',
                    'Lasso Least Angle Regression', 'Passive Aggressive Regressor', 'Orthogonal Matching Pursuit',
                    'Dummy Regressor', 'Least Angle Regression'],
      'MAE': [0.0000, 0.0000, 0.0000, 0.0055, 0.0003, 0.0000, 0.2143, 1.2493, 2.2450, 2.2451,
              2.2450, 2.1995, 2.3610, 2.3733, 2.3733, 3.0690, 6.3290, 8.3423, 8.7474],
      'MSE': [0.0000, 0.0000, 0.0000, 0.0002, 0.0000, 0.0000, 0.0777, 2.3647, 7.3785, 7.3784,
              7.3785, 8.0557, 9.1970, 9.4301, 9.4301, 16.9831, 68.2626, 108.6826, 147.4126],
      'RMSE': [0.0000, 0.0000, 0.0000, 0.0125, 0.0007, 0.0000, 0.2785, 1.5376, 2.7163, 2.7163,
               2.7163, 2.8372, 3.0326, 3.0708, 3.0708, 4.0527, 8.2619, 10.4250, 10.9345],
      'R2': [1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.9993, 0.9782, 0.9319, 0.9319,
             0.9319, 0.9257, 0.9152, 0.9130, 0.9130, 0.8435, 0.3705, -0.0023, -0.3576],
      'RMSLE': [0.0000, 0.0000, 0.0000, 0.0006, 0.0000, 0.0000, 0.0254, 0.1432, 0.2347, 0.2347,
                0.2347, 0.2184, 0.2081, 0.2166, 0.2165, 0.2905, 0.8095, 1.0236, 0.8220],
      'MAPE': [0.0000, 0.0000, 0.0000, 0.0006, 0.0000, 0.0000, 0.0309, 0.3354, 0.4365, 0.4367,
               0.4364, 0.4038, 0.4272, 0.4359, 0.4358, 0.6183, 3.0713, 6.3344, 2.9445],
      'TT (Sec)': [0.3600, 10.7310, 4.6500, 2.2730, 0.5930, 0.2650, 6.7620, 3.1140, 0.1550, 0.1480,
                    0.8520, 1.1060, 0.1560, 0.1560, 0.2480, 0.2530, 0.1470, 0.1440, 0.2080]
  }
  
  #Code for Best Models - PyCaret/MLFlow
  #!pip install pycaret --quiet
  #!pip install datasets --quiet
  #!pip install mlflow --quiet
  
  # Load the dataset from PyCaret
  #from pycaret.datasets import get_data
  #from pycaret.regression import setup, compare_models
  
  # Load the 'diamond' dataset
  #data = tech_df[cols]
  
  # Initialize setup
  #s = setup(data, target='NetProfitMargin_ratio', transform_target=True, log_plots=True, experiment_name='test1')
  
  # Compare regression models
  #best_model = compare_models()

  
  df = pd.DataFrame(data)
  
  # Display DataFrame as a table
  st.table(df)

  # - - - - - - - - - - - - - 
  st.subheader("Old Feature Importance (without Feature Engineering Variable)")
  st.image('features_importance.png')
  st.subheader('Feature Importance Now')
  st.image('newplot.png')