spamd / app.py
NimaKL's picture
App
607d7d8
raw
history blame
10.7 kB
import streamlit as st
from transformers import pipeline
from textblob import TextBlob
pipe = pipeline('summarization')
st.title("Spamd: Turkish Spam Detector")
# -*- coding: utf-8 -*-
"""Spamd_SpamDetector_Turkish_BERT_22.09.2022.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1QuorqAuLsmomesZHsaQHEZgzbPEM8YTH
"""
#Cuda and PyTorch Versions must match https://pytorch.org/get-started/locally/
import csv
data = []
# with open('TurkishSMSCollection.csv', "rt", encoding="utf-8") as csvfile:
# reader = csv.reader(csvfile, skipinitialspace=True)
# data.append(tuple(next(reader)))
# for Message, Group in reader:
# data.append((int(Group), Message))
import pandas as pd
df = pd.read_csv('TurkishSMSCollection.csv', encoding='utf-8', on_bad_lines='skip', usecols= ['Group','Message'], sep=r';')
df['Group']= df['Group'].replace(2, 0)
# reader = open('TurkishSMSCollection.csv', "rt", encoding="utf-8") as csvfile
print(df)
text = df.Message.values
len(text)
labels = df.Group.values
len(labels)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-uncased")
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
import torch
token_id = []
attention_masks = []
def preprocessing(input_text, tokenizer):
'''
Returns <class transformers.tokenization_utils_base.BatchEncoding> with the following fields:
- input_ids: list of token ids
- token_type_ids: list of token type ids
- attention_mask: list of indices (0,1) specifying which tokens should considered by the model (return_attention_mask = True).
'''
return tokenizer.encode_plus(
input_text,
add_special_tokens = True,
max_length = 32,
pad_to_max_length = True,
return_attention_mask = True,
return_tensors = 'pt'
)
for sample in text:
encoding_dict = preprocessing(sample, tokenizer)
token_id.append(encoding_dict['input_ids'])
attention_masks.append(encoding_dict['attention_mask'])
token_id = torch.cat(token_id, dim = 0)
attention_masks = torch.cat(attention_masks, dim = 0)
labels = torch.tensor(labels)
import random
import numpy as np
from tabulate import tabulate
def print_rand_sentence_encoding():
'''Displays tokens, token IDs and attention mask of a random text sample'''
index = random.randint(0, len(text) - 1)
tokens = tokenizer.tokenize(tokenizer.decode(token_id[index]))
token_ids = [i.numpy() for i in token_id[index]]
attention = [i.numpy() for i in attention_masks[index]]
table = np.array([tokens, token_ids, attention]).T
print(tabulate(table,
headers = ['Tokens', 'Token IDs', 'Attention Mask'],
tablefmt = 'fancy_grid'))
print_rand_sentence_encoding()
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, TensorDataset
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
val_ratio = 0.2
# Recommended batch size: 16, 32. See: https://arxiv.org/pdf/1810.04805.pdf
batch_size = 32
# Indices of the train and validation splits stratified by labels
train_idx, val_idx = train_test_split(
np.arange(len(labels)),
test_size = val_ratio,
shuffle = True,
stratify = labels)
# Train and validation sets
train_set = TensorDataset(token_id[train_idx],
attention_masks[train_idx],
labels[train_idx])
val_set = TensorDataset(token_id[val_idx],
attention_masks[val_idx],
labels[val_idx])
# Prepare DataLoader
train_dataloader = DataLoader(
train_set,
sampler = RandomSampler(train_set),
batch_size = batch_size
)
validation_dataloader = DataLoader(
val_set,
sampler = SequentialSampler(val_set),
batch_size = batch_size
)
def b_tp(preds, labels):
'''Returns True Positives (TP): count of correct predictions of actual class 1'''
return sum([preds == labels and preds == 1 for preds, labels in zip(preds, labels)])
def b_fp(preds, labels):
'''Returns False Positives (FP): count of wrong predictions of actual class 1'''
return sum([preds != labels and preds == 1 for preds, labels in zip(preds, labels)])
def b_tn(preds, labels):
'''Returns True Negatives (TN): count of correct predictions of actual class 0'''
return sum([preds == labels and preds == 0 for preds, labels in zip(preds, labels)])
def b_fn(preds, labels):
'''Returns False Negatives (FN): count of wrong predictions of actual class 0'''
return sum([preds != labels and preds == 0 for preds, labels in zip(preds, labels)])
def b_metrics(preds, labels):
'''
Returns the following metrics:
- accuracy = (TP + TN) / N
- precision = TP / (TP + FP)
- recall = TP / (TP + FN)
- specificity = TN / (TN + FP)
'''
preds = np.argmax(preds, axis = 1).flatten()
labels = labels.flatten()
tp = b_tp(preds, labels)
tn = b_tn(preds, labels)
fp = b_fp(preds, labels)
fn = b_fn(preds, labels)
b_accuracy = (tp + tn) / len(labels)
b_precision = tp / (tp + fp) if (tp + fp) > 0 else 'nan'
b_recall = tp / (tp + fn) if (tp + fn) > 0 else 'nan'
b_specificity = tn / (tn + fp) if (tn + fp) > 0 else 'nan'
return b_accuracy, b_precision, b_recall, b_specificity
from transformers import AutoModel
#!pip install torch.utils
from transformers import BertForSequenceClassification, AdamW, BertConfig
model = BertForSequenceClassification.from_pretrained(
"dbmdz/bert-base-turkish-uncased",
num_labels = 2,
output_attentions = False,
output_hidden_states = False)
optimizer = torch.optim.AdamW(model.parameters(),
lr = 5e-5,
eps = 1e-08
)
# Run on GPU
model.cuda()
from tqdm import trange
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Recommended number of epochs: 2, 3, 4. See: https://arxiv.org/pdf/1810.04805.pdf
epochs = 5
for _ in trange(epochs, desc = 'Epoch'):
# ========== Training ==========
# Set model to training mode
model.train()
# Tracking variables
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
optimizer.zero_grad()
# Forward pass
train_output = model(b_input_ids,
token_type_ids = None,
attention_mask = b_input_mask,
labels = b_labels)
# Backward pass
train_output.loss.backward()
optimizer.step()
# Update tracking variables
tr_loss += train_output.loss.item()
nb_tr_examples += b_input_ids.size(0)
nb_tr_steps += 1
# ========== Validation ==========
# Set model to evaluation mode
model.eval()
# Tracking variables
val_accuracy = []
val_precision = []
val_recall = []
val_specificity = []
for batch in validation_dataloader:
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
with torch.no_grad():
# Forward pass
eval_output = model(b_input_ids,
token_type_ids = None,
attention_mask = b_input_mask)
logits = eval_output.logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
# Calculate validation metrics
b_accuracy, b_precision, b_recall, b_specificity = b_metrics(logits, label_ids)
val_accuracy.append(b_accuracy)
# Update precision only when (tp + fp) !=0; ignore nan
if b_precision != 'nan': val_precision.append(b_precision)
# Update recall only when (tp + fn) !=0; ignore nan
if b_recall != 'nan': val_recall.append(b_recall)
# Update specificity only when (tn + fp) !=0; ignore nan
if b_specificity != 'nan': val_specificity.append(b_specificity)
print('\n\t - Train loss: {:.4f}'.format(tr_loss / nb_tr_steps))
print('\t - Validation Accuracy: {:.4f}'.format(sum(val_accuracy)/len(val_accuracy)))
print('\t - Validation Precision: {:.4f}'.format(sum(val_precision)/len(val_precision)) if len(val_precision)>0 else '\t - Validation Precision: NaN')
print('\t - Validation Recall: {:.4f}'.format(sum(val_recall)/len(val_recall)) if len(val_recall)>0 else '\t - Validation Recall: NaN')
print('\t - Validation Specificity: {:.4f}\n'.format(sum(val_specificity)/len(val_specificity)) if len(val_specificity)>0 else '\t - Validation Specificity: NaN')
#Used for printing the name if the variables. Removing it will not intrupt the project.
def namestr(obj, namespace):
return [name for name in namespace if namespace[name] is obj]
def predict(new_sentence):
# We need Token IDs and Attention Mask for inference on the new sentence
test_ids = []
test_attention_mask = []
# Apply the tokenizer
encoding = preprocessing(new_sentence, tokenizer)
# Extract IDs and Attention Mask
test_ids.append(encoding['input_ids'])
test_attention_mask.append(encoding['attention_mask'])
test_ids = torch.cat(test_ids, dim = 0)
test_attention_mask = torch.cat(test_attention_mask, dim = 0)
# Forward pass, calculate logit predictions
with torch.no_grad():
output = model(test_ids.to(device), token_type_ids = None, attention_mask = test_attention_mask.to(device))
prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal'
print('Input', namestr(new_sentence, globals()),': \n', new_sentence)
# Remove the namestr(new_sentence, globals()) in case of an error
print('Predicted Class: ', prediction,'\n----------------------------------\n')
#Textbox for text user is entering
st.subheader("Enter the text you'd like to analyze for spam.")
text = st.text_input('Enter text') #text is stored in this variable
predict(text)
'''
@software{stefan_schweter_2020_3770924,
author = {Stefan Schweter},
title = {BERTurk - BERT models for Turkish},
month = apr,
year = 2020,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.3770924},
url = {https://doi.org/10.5281/zenodo.3770924}
}
'''