|
import streamlit as st
|
|
import os
|
|
from langchain_groq import ChatGroq
|
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain.chains.combine_documents import create_stuff_documents_chain
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain.chains import create_retrieval_chain
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
|
from dotenv import load_dotenv
|
|
import time
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
|
groq_api_key = os.getenv("GROQ_API_KEY")
|
|
|
|
|
|
if huggingfacehub_api_token is None:
|
|
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
|
|
if groq_api_key is None:
|
|
raise ValueError("GROQ_API_KEY environment variable is not set")
|
|
|
|
|
|
os.environ['HUGGINGFACEHUB_API_TOKEN'] = huggingfacehub_api_token
|
|
|
|
|
|
llm = ChatGroq(api_key=groq_api_key, model_name="Llama3-8b-8192")
|
|
|
|
st.title("DataScience Chatgroq With Llama3")
|
|
|
|
prompt = ChatPromptTemplate.from_template(
|
|
"""
|
|
Answer the questions based on the provided context only.
|
|
Please provide the most accurate response based on the question.
|
|
<context>
|
|
{context}
|
|
<context>
|
|
Questions: {input}
|
|
"""
|
|
)
|
|
|
|
def vector_embedding():
|
|
if "vectors" not in st.session_state:
|
|
st.session_state.embeddings = HuggingFaceEmbeddings()
|
|
st.session_state.loader = PyPDFDirectoryLoader("./Data_Science")
|
|
st.session_state.docs = st.session_state.loader.load()
|
|
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
|
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:20])
|
|
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
|
|
|
|
prompt1 = st.text_input("Enter Your Question From Documents")
|
|
|
|
if st.button("Documents Embedding"):
|
|
vector_embedding()
|
|
st.write("Vector Store DB Is Ready")
|
|
|
|
if prompt1:
|
|
document_chain = create_stuff_documents_chain(llm, prompt)
|
|
retriever = st.session_state.vectors.as_retriever()
|
|
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
|
start = time.process_time()
|
|
response = retrieval_chain.invoke({'input': prompt1})
|
|
st.write("Response time: ", time.process_time() - start)
|
|
st.write(response['answer'])
|
|
|
|
with st.expander("Document Similarity Search"):
|
|
for i, doc in enumerate(response["context"]):
|
|
st.write(doc.page_content)
|
|
st.write("--------------------------------")
|
|
|