File size: 6,423 Bytes
a217ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from itertools import chain
from pathlib import Path
from typing import List, Optional

import neuralforecast as nf
import numpy as np
import pandas as pd
import pytorch_lightning as pl
from datasetsforecast.utils import download_file
from hyperopt import hp
from neuralforecast.auto import NHITS as autoNHITS
from neuralforecast.data.tsdataset import WindowsDataset
from neuralforecast.data.tsloader import TimeSeriesLoader
from neuralforecast.models.mqnhits.mqnhits import MQNHITS
from neuralforecast.models.nhits.nhits import NHITS

# GLOBAL PARAMETERS
DEFAULT_HORIZON = 30
HYPEROPT_STEPS = 10
MAX_STEPS = 1000
N_TS_VAL = 2 * 30

MODELS = {
    "Pretrained N-HiTS M4 Hourly": {
        "card": "nhitsh",
        "max_steps": 0,
        "model": "nhits_m4_hourly",
    },
    "Pretrained N-HiTS M4 Hourly (Tiny)": {
        "card": "nhitsh",
        "max_steps": 0,
        "model": "nhits_m4_hourly_tiny",
    },
    "Pretrained N-HiTS M4 Daily": {
        "card": "nhitsd",
        "max_steps": 0,
        "model": "nhits_m4_daily",
    },
    "Pretrained N-HiTS M4 Monthly": {
        "card": "nhitsm",
        "max_steps": 0,
        "model": "nhits_m4_monthly",
    },
    "Pretrained N-HiTS M4 Yearly": {
        "card": "nhitsy",
        "max_steps": 0,
        "model": "nhits_m4_yearly",
    },
    "Pretrained N-BEATS M4 Hourly": {
        "card": "nbeatsh",
        "max_steps": 0,
        "model": "nbeats_m4_hourly",
    },
    "Pretrained N-BEATS M4 Daily": {
        "card": "nbeatsd",
        "max_steps": 0,
        "model": "nbeats_m4_daily",
    },
    "Pretrained N-BEATS M4 Weekly": {
        "card": "nbeatsw",
        "max_steps": 0,
        "model": "nbeats_m4_weekly",
    },
    "Pretrained N-BEATS M4 Monthly": {
        "card": "nbeatsm",
        "max_steps": 0,
        "model": "nbeats_m4_monthly",
    },
    "Pretrained N-BEATS M4 Yearly": {
        "card": "nbeatsy",
        "max_steps": 0,
        "model": "nbeats_m4_yearly",
    },
}


def download_models():
    for _, meta in MODELS.items():
        if not Path(f'./models/{meta["model"]}.ckpt').is_file():
            download_file(
                "./models/",
                f'https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/{meta["model"]}.ckpt',
            )


download_models()


class StandardScaler:
    """This class helps to standardize a dataframe with multiple time series."""

    def __init__(self):
        self.norm: pd.DataFrame

    def fit(self, X: pd.DataFrame) -> "StandardScaler":
        self.norm = X.groupby("unique_id").agg({"y": [np.mean, np.std]})
        self.norm = self.norm.droplevel(0, 1).reset_index()

    def transform(self, X: pd.DataFrame) -> pd.DataFrame:
        transformed = X.merge(self.norm, how="left", on=["unique_id"])
        transformed["y"] = (transformed["y"] - transformed["mean"]) / transformed["std"]
        return transformed[["unique_id", "ds", "y"]]

    def inverse_transform(self, X: pd.DataFrame, cols: List[str]) -> pd.DataFrame:
        transformed = X.merge(self.norm, how="left", on=["unique_id"])
        for col in cols:
            transformed[col] = (
                transformed[col] * transformed["std"] + transformed["mean"]
            )
        return transformed[["unique_id", "ds"] + cols]


def compute_ds_future(Y_df, fh):
    if Y_df["unique_id"].nunique() == 1:
        ds_ = pd.to_datetime(Y_df["ds"].values)
        try:
            freq = pd.infer_freq(ds_)
        except:
            freq = None
        if freq is not None:
            ds_future = pd.date_range(ds_[-1], periods=fh + 1, freq=freq)[1:]
        else:
            freq = ds_[-1] - ds_[-2]
            ds_future = [ds_[-1] + (i + 1) * freq for i in range(fh)]
        ds_future = list(map(str, ds_future))
        return ds_future
    else:
        ds_future = chain(
            *[compute_ds_future(df, fh) for _, df in Y_df.groupby("unique_id")]
        )
        return list(ds_future)


def forecast_pretrained_model(
    Y_df: pd.DataFrame, model: str, fh: int, max_steps: int = 0
):
    if "unique_id" not in Y_df:
        Y_df.insert(0, "unique_id", "ts_1")

    scaler = StandardScaler()
    scaler.fit(Y_df)
    Y_df = scaler.transform(Y_df)

    # Model
    file_ = f"./models/{model}.ckpt"
    mqnhits = MQNHITS.load_from_checkpoint(file_)

    # Fit
    if max_steps > 0:
        train_dataset = WindowsDataset(
            Y_df=Y_df,
            X_df=None,
            S_df=None,
            mask_df=None,
            f_cols=[],
            input_size=mqnhits.n_time_in,
            output_size=mqnhits.n_time_out,
            sample_freq=1,
            complete_windows=True,
            verbose=False,
        )

        train_loader = TimeSeriesLoader(
            dataset=train_dataset, batch_size=1, n_windows=32, shuffle=True
        )

        trainer = pl.Trainer(
            max_epochs=None,
            checkpoint_callback=False,
            logger=False,
            max_steps=max_steps,
            gradient_clip_val=1.0,
            progress_bar_refresh_rate=1,
            log_every_n_steps=1,
        )

        trainer.fit(mqnhits, train_loader)

    # Forecast
    forecast_df = mqnhits.forecast(Y_df=Y_df)
    forecast_df = scaler.inverse_transform(forecast_df, cols=["y_5", "y_50", "y_95"])

    # Foreoast
    n_ts = forecast_df["unique_id"].nunique()
    if fh * n_ts > len(forecast_df):
        forecast_df = (
            forecast_df.groupby("unique_id")
            .apply(lambda df: pd.concat([df] * fh).head(fh))
            .reset_index(drop=True)
        )
    else:
        forecast_df = forecast_df.groupby("unique_id").head(fh)
    forecast_df["ds"] = compute_ds_future(Y_df, fh)

    return forecast_df


if __name__ == "__main__":
    df = pd.read_csv(
        "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/ercot_COAST.csv"
    )
    df.columns = ["ds", "y"]
    multi_df = pd.concat([df.assign(unique_id=f"ts{i}") for i in range(2)])
    assert len(compute_ds_future(multi_df, 80)) == 2 * 80
    for _, meta in MODELS.items():
        # test just a time series (without unique_id)
        forecast = forecast_pretrained_model(df, model=meta["model"], fh=80)
        assert forecast.shape == (80, 5)
        # test multiple time series
        multi_forecast = forecast_pretrained_model(multi_df, model=meta["model"], fh=80)
        assert multi_forecast.shape == (80 * 2, 5)