Spaces:
Build error
Build error
File size: 30,765 Bytes
580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 580ef8a 0f91720 51a7969 580ef8a 51a7969 580ef8a 51a7969 0f91720 51a7969 580ef8a 0f91720 51a7969 0f91720 51a7969 580ef8a 51a7969 580ef8a 51a7969 580ef8a 51a7969 580ef8a 51a7969 580ef8a 51a7969 580ef8a 51a7969 580ef8a 51a7969 0f91720 51a7969 0f91720 51a7969 0f91720 51a7969 580ef8a 51a7969 8224d2b 9004b7f 0f91720 9004b7f e0b30b2 9004b7f 51a7969 9004b7f 0f91720 580ef8a 51a7969 9004b7f b26218c 51a7969 9004b7f 6a956f7 9ddb2ad 6a956f7 9004b7f 6a956f7 9ddb2ad 6a956f7 9004b7f 6a956f7 9ddb2ad 6a956f7 9004b7f 6a956f7 9ddb2ad 6a956f7 9004b7f 6a956f7 9ddb2ad 6a956f7 9004b7f 0f91720 6a956f7 0f91720 9ddb2ad 9004b7f 6a956f7 9004b7f 51a7969 9004b7f 51a7969 9004b7f 51a7969 9004b7f 0f91720 9004b7f b26218c 9004b7f b26218c 9004b7f b26218c 9004b7f b26218c 9004b7f b26218c 9004b7f 0b75af5 9004b7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
# # # import os
# # # import json
# # # import gradio as gr
# # # import spaces
# # # import torch
# # # from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
# # # from sentence_splitter import SentenceSplitter
# # # from itertools import product
# # # # Get the Hugging Face token from environment variable
# # # hf_token = os.getenv('HF_TOKEN')
# # # cuda_available = torch.cuda.is_available()
# # # device = torch.device("cpu" if cuda_available else "cpu")
# # # print(f"Using device: {device}")
# # # # Initialize paraphraser model and tokenizer
# # # paraphraser_model_name = "NoaiGPT/777"
# # # paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, use_auth_token=hf_token)
# # # paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, use_auth_token=hf_token).to(device)
# # # # Initialize classifier model and tokenizer
# # # classifier_model_name = "andreas122001/roberta-mixed-detector"
# # # classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
# # # classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
# # # # Initialize sentence splitter
# # # splitter = SentenceSplitter(language='en')
# # # def classify_text(text):
# # # inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
# # # with torch.no_grad():
# # # outputs = classifier_model(**inputs)
# # # probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# # # predicted_class = torch.argmax(probabilities, dim=-1).item()
# # # main_label = classifier_model.config.id2label[predicted_class]
# # # main_score = probabilities[0][predicted_class].item()
# # # return main_label, main_score
# # # # @spaces.GPU
# # # def generate_paraphrases(text, setting, output_format):
# # # sentences = splitter.split(text)
# # # all_sentence_paraphrases = []
# # # if setting == 1:
# # # num_return_sequences = 5
# # # repetition_penalty = 1.1
# # # no_repeat_ngram_size = 2
# # # temperature = 1.0
# # # max_length = 128
# # # elif setting == 2:
# # # num_return_sequences = 10
# # # repetition_penalty = 1.2
# # # no_repeat_ngram_size = 3
# # # temperature = 1.2
# # # max_length = 192
# # # elif setting == 3:
# # # num_return_sequences = 15
# # # repetition_penalty = 1.3
# # # no_repeat_ngram_size = 4
# # # temperature = 1.4
# # # max_length = 256
# # # elif setting == 4:
# # # num_return_sequences = 20
# # # repetition_penalty = 1.4
# # # no_repeat_ngram_size = 5
# # # temperature = 1.6
# # # max_length = 320
# # # else:
# # # num_return_sequences = 25
# # # repetition_penalty = 1.5
# # # no_repeat_ngram_size = 6
# # # temperature = 1.8
# # # max_length = 384
# # # top_k = 50
# # # top_p = 0.95
# # # length_penalty = 1.0
# # # formatted_output = "Original text:\n" + text + "\n\n"
# # # formatted_output += "Paraphrased versions:\n"
# # # json_output = {
# # # "original_text": text,
# # # "paraphrased_versions": [],
# # # "combined_versions": [],
# # # "human_like_versions": []
# # # }
# # # for i, sentence in enumerate(sentences):
# # # inputs = paraphraser_tokenizer(f'paraphraser: {sentence}', return_tensors="pt", padding="longest", truncation=True, max_length=max_length).to(device)
# # # # Generate paraphrases using the specified parameters
# # # outputs = paraphraser_model.generate(
# # # inputs.input_ids,
# # # attention_mask=inputs.attention_mask,
# # # num_return_sequences=num_return_sequences,
# # # repetition_penalty=repetition_penalty,
# # # no_repeat_ngram_size=no_repeat_ngram_size,
# # # temperature=temperature,
# # # max_length=max_length,
# # # top_k=top_k,
# # # top_p=top_p,
# # # do_sample=True,
# # # early_stopping=False,
# # # length_penalty=length_penalty
# # # )
# # # paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
# # # formatted_output += f"Original sentence {i+1}: {sentence}\n"
# # # for j, paraphrase in enumerate(paraphrases, 1):
# # # formatted_output += f" Paraphrase {j}: {paraphrase}\n"
# # # json_output["paraphrased_versions"].append({
# # # f"original_sentence_{i+1}": sentence,
# # # "paraphrases": paraphrases
# # # })
# # # all_sentence_paraphrases.append(paraphrases)
# # # formatted_output += "\n"
# # # all_combinations = list(product(*all_sentence_paraphrases))
# # # formatted_output += "\nCombined paraphrased versions:\n"
# # # combined_versions = []
# # # for i, combination in enumerate(all_combinations[:50], 1): # Limit to 50 combinations
# # # combined_paraphrase = " ".join(combination)
# # # combined_versions.append(combined_paraphrase)
# # # json_output["combined_versions"] = combined_versions
# # # # Classify combined versions
# # # human_versions = []
# # # for i, version in enumerate(combined_versions, 1):
# # # label, score = classify_text(version)
# # # formatted_output += f"Version {i}:\n{version}\n"
# # # formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# # # if label == "human-produced" or (label == "machine-generated" and score < 0.98):
# # # human_versions.append((version, label, score))
# # # formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
# # # for i, (version, label, score) in enumerate(human_versions, 1):
# # # formatted_output += f"Version {i}:\n{version}\n"
# # # formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# # # json_output["human_like_versions"] = [
# # # {"version": version, "label": label, "confidence_score": score}
# # # for version, label, score in human_versions
# # # ]
# # # # If no human-like versions, include the top 5 least confident machine-generated versions
# # # if not human_versions:
# # # human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
# # # formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
# # # for i, (version, label, score) in enumerate(human_versions, 1):
# # # formatted_output += f"Version {i}:\n{version}\n"
# # # formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# # # if output_format == "text":
# # # return formatted_output, "\n\n".join([v[0] for v in human_versions])
# # # else:
# # # return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])
# # # # Define the Gradio interface
# # # iface = gr.Interface(
# # # fn=generate_paraphrases,
# # # inputs=[
# # # gr.Textbox(lines=5, label="Input Text"),
# # # gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
# # # gr.Radio(["text", "json"], label="Output Format")
# # # ],
# # # outputs=[
# # # gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
# # # gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
# # # ],
# # # title="Advanced Diverse Paraphraser with Human-like Filter",
# # # description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
# # # )
# # # # Launch the interface
# # # iface.launch()
# # import os
# # import json
# # import gradio as gr
# # import spaces
# # import torch
# # from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
# # from sentence_splitter import SentenceSplitter
# # from itertools import product
# # # Get the Hugging Face token from environment variable
# # hf_token = os.getenv('HF_TOKEN')
# # cuda_available = torch.cuda.is_available()
# # device = torch.device("cuda" if cuda_available else "cpu")
# # print(f"Using device: {device}")
# # # Initialize paraphraser model and tokenizer
# # paraphraser_model_name = "sharad/ParaphraseGPT"
# # paraphraser_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
# # paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name).to(device)
# # paraphrase_pipeline = pipeline("text2text-generation", model=paraphraser_model, tokenizer=paraphraser_tokenizer, device=0 if cuda_available else -1)
# # # Initialize classifier model and tokenizer
# # classifier_model_name = "andreas122001/roberta-mixed-detector"
# # classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
# # classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
# # # Initialize sentence splitter
# # splitter = SentenceSplitter(language='en')
# # def classify_text(text):
# # inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
# # with torch.no_grad():
# # outputs = classifier_model(**inputs)
# # probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# # predicted_class = torch.argmax(probabilities, dim=-1).item()
# # main_label = classifier_model.config.id2label[predicted_class]
# # main_score = probabilities[0][predicted_class].item()
# # return main_label, main_score
# # @spaces.GPU
# # def generate_paraphrases(text, setting, output_format):
# # sentences = splitter.split(text)
# # all_sentence_paraphrases = []
# # if setting == 1:
# # num_return_sequences = 5
# # repetition_penalty = 1.1
# # no_repeat_ngram_size = 2
# # temperature = 0.9
# # max_length = 128
# # elif setting == 2:
# # num_return_sequences = 5
# # repetition_penalty = 1.2
# # no_repeat_ngram_size = 3
# # temperature = 0.95
# # max_length = 192
# # elif setting == 3:
# # num_return_sequences = 5
# # repetition_penalty = 1.3
# # no_repeat_ngram_size = 4
# # temperature = 1.0
# # max_length = 256
# # elif setting == 4:
# # num_return_sequences = 5
# # repetition_penalty = 1.4
# # no_repeat_ngram_size = 5
# # temperature = 1.05
# # max_length = 320
# # else:
# # num_return_sequences = 5
# # repetition_penalty = 1.5
# # no_repeat_ngram_size = 6
# # temperature = 1.1
# # max_length = 384
# # top_k = 50
# # top_p = 0.95
# # length_penalty = 1.0
# # formatted_output = "Original text:\n" + text + "\n\n"
# # formatted_output += "Paraphrased versions:\n"
# # json_output = {
# # "original_text": text,
# # "paraphrased_versions": [],
# # "combined_versions": [],
# # "human_like_versions": []
# # }
# # for i, sentence in enumerate(sentences):
# # paraphrases = paraphrase_pipeline(
# # sentence,
# # num_return_sequences=num_return_sequences,
# # do_sample=True,
# # top_k=top_k,
# # top_p=top_p,
# # temperature=temperature,
# # no_repeat_ngram_size=no_repeat_ngram_size,
# # repetition_penalty=repetition_penalty,
# # max_length=max_length
# # )
# # paraphrases_texts = [p['generated_text'] for p in paraphrases]
# # formatted_output += f"Original sentence {i+1}: {sentence}\n"
# # for j, paraphrase in enumerate(paraphrases_texts, 1):
# # formatted_output += f" Paraphrase {j}: {paraphrase}\n"
# # json_output["paraphrased_versions"].append({
# # f"original_sentence_{i+1}": sentence,
# # "paraphrases": paraphrases_texts
# # })
# # all_sentence_paraphrases.append(paraphrases_texts)
# # formatted_output += "\n"
# # all_combinations = list(product(*all_sentence_paraphrases))
# # formatted_output += "\nCombined paraphrased versions:\n"
# # combined_versions = []
# # for i, combination in enumerate(all_combinations[:50], 1): # Limit to 50 combinations
# # combined_paraphrase = " ".join(combination)
# # combined_versions.append(combined_paraphrase)
# # json_output["combined_versions"] = combined_versions
# # # Classify combined versions
# # human_versions = []
# # for i, version in enumerate(combined_versions, 1):
# # label, score = classify_text(version)
# # formatted_output += f"Version {i}:\n{version}\n"
# # formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# # if label == "human-produced" or (label == "machine-generated" and score < 0.98):
# # human_versions.append((version, label, score))
# # formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
# # for i, (version, label, score) in enumerate(human_versions, 1):
# # formatted_output += f"Version {i}:\n{version}\n"
# # formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# # json_output["human_like_versions"] = [
# # {"version": version, "label": label, "confidence_score": score}
# # for version, label, score in human_versions
# # ]
# # # If no human-like versions, include the top 5 least confident machine-generated versions
# # if not human_versions:
# # human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
# # formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
# # for i, (version, label, score) in enumerate(human_versions, 1):
# # formatted_output += f"Version {i}:\n{version}\n"
# # formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# # if output_format == "text":
# # return formatted_output, "\n\n".join([v[0] for v in human_versions])
# # else:
# # return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])
# # # Define the Gradio interface
# # iface = gr.Interface(
# # fn=generate_paraphrases,
# # inputs=[
# # gr.Textbox(lines=5, label="Input Text"),
# # gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
# # gr.Radio(["text", "json"], label="Output Format")
# # ],
# # outputs=[
# # gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
# # gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
# # ],
# # title="Advanced Diverse Paraphraser with Human-like Filter",
# # description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
# # )
# # # Launch the interface
# # iface.launch()
# import os
# import json
# import gradio as gr
# import spaces
# import torch
# import sys
# import subprocess
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
# from sentence_splitter import SentenceSplitter
# from itertools import product
# # Ensure sentencepiece is installed
# try:
# import sentencepiece
# except ImportError:
# subprocess.check_call([sys.executable, "-m", "pip", "install", "sentencepiece"])
# # Get the Hugging Face token from environment variable
# hf_token = os.getenv('HF_TOKEN')
# cuda_available = torch.cuda.is_available()
# device = torch.device("cuda" if cuda_available else "cpu")
# print(f"Using device: {device}")
# # Initialize paraphraser model and tokenizer
# paraphraser_model_name = "ramsrigouthamg/t5-large-paraphraser-diverse-high-quality"
# paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, use_fast=False)
# paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name).to(device)
# # Initialize classifier model and tokenizer
# classifier_model_name = "andreas122001/roberta-mixed-detector"
# classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
# classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
# # Initialize sentence splitter
# splitter = SentenceSplitter(language='en')
# def classify_text(text):
# inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
# with torch.no_grad():
# outputs = classifier_model(**inputs)
# probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# predicted_class = torch.argmax(probabilities, dim=-1).item()
# main_label = classifier_model.config.id2label[predicted_class]
# main_score = probabilities[0][predicted_class].item()
# return main_label, main_score
# @spaces.GPU
# def generate_paraphrases(text, setting, output_format):
# sentences = splitter.split(text)
# all_sentence_paraphrases = []
# if setting == 1:
# num_return_sequences = 3
# num_beams = 5
# max_length = 128
# elif setting == 2:
# num_return_sequences = 3
# num_beams = 7
# max_length = 192
# elif setting == 3:
# num_return_sequences = 3
# num_beams = 9
# max_length = 256
# elif setting == 4:
# num_return_sequences = 3
# num_beams = 11
# max_length = 320
# else:
# num_return_sequences = 3
# num_beams = 15
# max_length = 384
# formatted_output = "Original text:\n" + text + "\n\n"
# formatted_output += "Paraphrased versions:\n"
# json_output = {
# "original_text": text,
# "paraphrased_versions": [],
# "combined_versions": [],
# "human_like_versions": []
# }
# for i, sentence in enumerate(sentences):
# text = "paraphrase: " + sentence + " </s>"
# encoding = paraphraser_tokenizer.encode_plus(text, max_length=max_length, padding=True, return_tensors="pt")
# input_ids, attention_mask = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
# paraphraser_model.eval()
# beam_outputs = paraphraser_model.generate(
# input_ids=input_ids,
# attention_mask=attention_mask,
# max_length=max_length,
# early_stopping=True,
# num_beams=num_beams,
# num_return_sequences=num_return_sequences
# )
# paraphrases_texts = [paraphraser_tokenizer.decode(beam_output, skip_special_tokens=True, clean_up_tokenization_spaces=True) for beam_output in beam_outputs]
# formatted_output += f"Original sentence {i+1}: {sentence}\n"
# for j, paraphrase in enumerate(paraphrases_texts, 1):
# formatted_output += f" Paraphrase {j}: {paraphrase}\n"
# json_output["paraphrased_versions"].append({
# f"original_sentence_{i+1}": sentence,
# "paraphrases": paraphrases_texts
# })
# all_sentence_paraphrases.append(paraphrases_texts)
# formatted_output += "\n"
# all_combinations = list(product(*all_sentence_paraphrases))
# formatted_output += "\nCombined paraphrased versions:\n"
# combined_versions = []
# for i, combination in enumerate(all_combinations[:50], 1): # Limit to 50 combinations
# combined_paraphrase = " ".join(combination)
# combined_versions.append(combined_paraphrase)
# json_output["combined_versions"] = combined_versions
# # Classify combined versions
# human_versions = []
# for i, version in enumerate(combined_versions, 1):
# label, score = classify_text(version)
# formatted_output += f"Version {i}:\n{version}\n"
# formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# if label == "human-produced" or (label == "machine-generated" and score < 0.90): # Adjusted threshold
# human_versions.append((version, label, score))
# formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
# for i, (version, label, score) in enumerate(human_versions, 1):
# formatted_output += f"Version {i}:\n{version}\n"
# formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# json_output["human_like_versions"] = [
# {"version": version, "label": label, "confidence_score": score}
# for version, label, score in human_versions
# ]
# # If no human-like versions, include the top 5 least confident machine-generated versions
# if not human_versions:
# human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
# formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
# for i, (version, label, score) in enumerate(human_versions, 1):
# formatted_output += f"Version {i}:\n{version}\n"
# formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# if output_format == "text":
# return formatted_output, "\n\n".join([v[0] for v in human_versions])
# else:
# return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])
# # Define the Gradio interface
# iface = gr.Interface(
# fn=generate_paraphrases,
# inputs=[
# gr.Textbox(lines=5, label="Input Text"),
# gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
# gr.Radio(["text", "json"], label="Output Format")
# ],
# outputs=[
# gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
# gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
# ],
# title="Advanced Diverse Paraphraser with Human-like Filter",
# description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
# )
# # Launch the interface
# iface.launch()
import os
import json
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
from sentence_splitter import SentenceSplitter
from itertools import product
# Get the Hugging Face token from environment variable
hf_token = os.getenv('HF_TOKEN')
cuda_available = torch.cuda.is_available()
device = torch.device("cuda" if cuda_available else "cpu")
print(f"Using device: {device}")
# Initialize paraphraser model and tokenizer
paraphraser_model_name = "ramsrigouthamg/t5-large-paraphraser-diverse-high-quality"
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name)
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name).to(device)
# Initialize classifier model and tokenizer
classifier_model_name = "andreas122001/roberta-mixed-detector"
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
# Initialize sentence splitter
splitter = SentenceSplitter(language='en')
def classify_text(text):
inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = classifier_model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
main_label = classifier_model.config.id2label[predicted_class]
main_score = probabilities[0][predicted_class].item()
return main_label, main_score
def clean_text(text):
return text.replace("paraphrasedoutput: ", "")
@spaces.GPU
def generate_paraphrases(text, setting, output_format):
sentences = splitter.split(text)
all_sentence_paraphrases = []
if setting == 1:
num_return_sequences = 5
temperature = 1.0
top_k = 50
top_p = 0.95
max_length = 128
elif setting == 2:
num_return_sequences = 7
temperature = 1.2
top_k = 50
top_p = 0.95
max_length = 192
elif setting == 3:
num_return_sequences = 10
temperature = 1.4
top_k = 50
top_p = 0.95
max_length = 256
elif setting == 4:
num_return_sequences = 15
temperature = 1.6
top_k = 50
top_p = 0.95
max_length = 320
else:
num_return_sequences = 20
temperature = 1.8
top_k = 50
top_p = 0.95
max_length = 384
formatted_output = "Original text:\n" + text + "\n\n"
formatted_output += "Paraphrased versions:\n"
json_output = {
"original_text": text,
"paraphrased_versions": [],
"combined_versions": [],
"human_like_versions": []
}
for i, sentence in enumerate(sentences):
text = "paraphrase: " + sentence + " </s>"
encoding = paraphraser_tokenizer.encode_plus(text, max_length=max_length, padding=True, return_tensors="pt")
input_ids, attention_mask = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
paraphraser_model.eval()
outputs = paraphraser_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
num_return_sequences=num_return_sequences,
do_sample=True,
top_k=top_k,
top_p=top_p,
temperature=temperature
)
paraphrases_texts = [paraphraser_tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) for output in outputs]
formatted_output += f"Original sentence {i+1}: {sentence}\n"
for j, paraphrase in enumerate(paraphrases_texts, 1):
formatted_output += f" Paraphrase {j}: {paraphrase}\n"
json_output["paraphrased_versions"].append({
f"original_sentence_{i+1}": sentence,
"paraphrases": paraphrases_texts
})
all_sentence_paraphrases.append(paraphrases_texts)
formatted_output += "\n"
all_combinations = list(product(*all_sentence_paraphrases))
formatted_output += "\nCombined paraphrased versions:\n"
combined_versions = []
for i, combination in enumerate(all_combinations[:50], 1): # Limit to 50 combinations
combined_paraphrase = " ".join(combination)
combined_versions.append(combined_paraphrase)
json_output["combined_versions"] = combined_versions
# Classify combined versions
human_versions = []
for i, version in enumerate(combined_versions, 1):
label, score = classify_text(version)
formatted_output += f"Version {i}:\n{version}\n"
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
if label == "human-produced" or (label == "machine-generated" and score < 0.90): # Adjusted threshold
human_versions.append((version, label, score))
formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
for i, (version, label, score) in enumerate(human_versions, 1):
formatted_output += f"Version {i}:\n{version}\n"
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
json_output["human_like_versions"] = [
{"version": version, "label": label, "confidence_score": score}
for version, label, score in human_versions
]
# If no human-like versions, include the top 5 least confident machine-generated versions
if not human_versions:
human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
for i, (version, label, score) in enumerate(human_versions, 1):
formatted_output += f"Version {i}:\n{version}\n"
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
if output_format == "text":
return formatted_output, "\n\n".join([v[0] for v in human_versions])
else:
return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])
def clean_paraphrased_output(text):
cleaned_text = clean_text(text)
return cleaned_text
# Define the Gradio interface
iface = gr.Interface(
fn=clean_paraphrased_output,
inputs=[
gr.Textbox(lines=5, label="Input Text")
],
outputs=[
gr.Textbox(lines=20, label="Cleaned Text")
],
title="Clean Paraphrased Output",
description="Enter a text with 'paraphrasedoutput:' prefix and get the cleaned text."
)
# Launch the interface
iface.launch() |