File size: 3,375 Bytes
dd4bbec
1352961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd4bbec
 
 
1352961
dd4bbec
1352961
 
dd4bbec
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr
import json
import os
import numexpr
from groq import Groq
from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam

MODEL = "llama3-groq-8b-8192-tool-use-preview"
client = Groq(api_key=os.environ["GROQ_API_KEY"])

def evaluate_math_expression(expression: str):
    return json.dumps(numexpr.evaluate(expression).tolist())

calculator_tool: ChatCompletionToolParam = {
    "type": "function",
    "function": {
        "name": "evaluate_math_expression",
        "description":
        "Calculator tool: use this for evaluating numeric expressions with Python. Ensure the expression is valid Python syntax (e.g., use '**' for exponentiation, not '^').",
        "parameters": {
            "type": "object",
            "properties": {
                "expression": {
                    "type": "string",
                    "description": "The mathematical expression to evaluate. Must be valid Python syntax.",
                },
            },
            "required": ["expression"],
        },
    },
}

tools = [calculator_tool]

def call_function(tool_call, available_functions):
    function_name = tool_call.function.name
    if function_name not in available_functions:
        return {
            "tool_call_id": tool_call.id,
            "role": "tool",
            "content": f"Function {function_name} does not exist.",
        }
    function_to_call = available_functions[function_name]
    function_args = json.loads(tool_call.function.arguments)
    function_response = function_to_call(**function_args)
    return {
        "tool_call_id": tool_call.id,
        "role": "tool",
        "name": function_name,
        "content": json.dumps(function_response),
    }

def get_model_response(messages):
    return client.chat.completions.create(
        model=MODEL,
        messages=messages,
        tools=tools,
        temperature=0.5,
        top_p=0.65,
        max_tokens=4096,
    )

def respond(message, history, system_message):
    conversation = [{"role": "system", "content": system_message}]
    for human, assistant in history:
        conversation.append({"role": "user", "content": human})
        conversation.append({"role": "assistant", "content": assistant})
    conversation.append({"role": "user", "content": message})

    available_functions = {
        "evaluate_math_expression": evaluate_math_expression,
    }

    while True:
        response = get_model_response(conversation)
        response_message = response.choices[0].message
        conversation.append(response_message)

        if not response_message.tool_calls and response_message.content is not None:
            return response_message.content

        if response_message.tool_calls is not None:
            for tool_call in response_message.tool_calls:
                function_response = call_function(tool_call, available_functions)
                conversation.append(function_response)

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot with access to a calculator. Don't mention that we are using functions defined in Python.", label="System message"),
    ],
    title="Groq Tool Use Chat",
    description="This chatbot uses the Groq LLM with tool use capabilities, including a calculator function.",
)

if __name__ == "__main__":
    demo.launch()