Spaces:
Running
Running
import os | |
os.system('git clone https://github.com/pytorch/fairseq.git; cd fairseq;' | |
'pip install --use-feature=in-tree-build ./; cd ..') | |
os.system('ls -l') | |
import torch | |
import numpy as np | |
import re | |
from fairseq import utils,tasks | |
from fairseq import checkpoint_utils | |
from fairseq import distributed_utils, options, tasks, utils | |
from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
from utils.zero_shot_utils import zero_shot_step | |
from tasks.mm_tasks.vqa_gen import VqaGenTask | |
from models.ofa import OFAModel | |
from PIL import Image | |
from torchvision import transforms | |
import gradio as gr | |
# Register VQA task | |
tasks.register_task('vqa_gen',VqaGenTask) | |
# turn on cuda if GPU is available | |
use_cuda = torch.cuda.is_available() | |
# use fp16 only when GPU is available | |
use_fp16 = False | |
os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/ofa_large_384.pt; ' | |
'mkdir -p checkpoints; mv ofa_large_384.pt checkpoints/ofa_large_384.pt') | |
# specify some options for evaluation | |
parser = options.get_generation_parser() | |
input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", "--path=checkpoints/ofa_large_384.pt", "--bpe-dir=utils/BPE"] | |
args = options.parse_args_and_arch(parser, input_args) | |
cfg = convert_namespace_to_omegaconf(args) | |
# Load pretrained ckpt & config | |
task = tasks.setup_task(cfg.task) | |
models, cfg = checkpoint_utils.load_model_ensemble( | |
utils.split_paths(cfg.common_eval.path), | |
task=task | |
) | |
# Move models to GPU | |
for model in models: | |
model.eval() | |
if use_fp16: | |
model.half() | |
if use_cuda and not cfg.distributed_training.pipeline_model_parallel: | |
model.cuda() | |
model.prepare_for_inference_(cfg) | |
# Initialize generator | |
generator = task.build_generator(models, cfg.generation) | |
# Image transform | |
from torchvision import transforms | |
mean = [0.5, 0.5, 0.5] | |
std = [0.5, 0.5, 0.5] | |
patch_resize_transform = transforms.Compose([ | |
lambda image: image.convert("RGB"), | |
transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=mean, std=std), | |
]) | |
# Text preprocess | |
bos_item = torch.LongTensor([task.src_dict.bos()]) | |
eos_item = torch.LongTensor([task.src_dict.eos()]) | |
pad_idx = task.src_dict.pad() | |
# Normalize the question | |
def pre_question(question, max_ques_words): | |
question = question.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ') | |
question = re.sub( | |
r"\s{2,}", | |
' ', | |
question, | |
) | |
question = question.rstrip('\n') | |
question = question.strip(' ') | |
# truncate question | |
question_words = question.split(' ') | |
if len(question_words) > max_ques_words: | |
question = ' '.join(question_words[:max_ques_words]) | |
return question | |
def encode_text(text, length=None, append_bos=False, append_eos=False): | |
s = task.tgt_dict.encode_line( | |
line=task.bpe.encode(text), | |
add_if_not_exist=False, | |
append_eos=False | |
).long() | |
if length is not None: | |
s = s[:length] | |
if append_bos: | |
s = torch.cat([bos_item, s]) | |
if append_eos: | |
s = torch.cat([s, eos_item]) | |
return s | |
# Construct input for open-domain VQA task | |
def construct_sample(image: Image, question: str): | |
patch_image = patch_resize_transform(image).unsqueeze(0) | |
patch_mask = torch.tensor([True]) | |
question = pre_question(question, task.cfg.max_src_length) | |
question = question + '?' if not question.endswith('?') else question | |
src_text = encode_text(' {}'.format(question), append_bos=True, append_eos=True).unsqueeze(0) | |
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text]) | |
ref_dict = np.array([{'yes': 1.0}]) # just placeholder | |
sample = { | |
"id":np.array(['42']), | |
"net_input": { | |
"src_tokens": src_text, | |
"src_lengths": src_length, | |
"patch_images": patch_image, | |
"patch_masks": patch_mask, | |
}, | |
"ref_dict": ref_dict, | |
} | |
return sample | |
# Function to turn FP32 to FP16 | |
def apply_half(t): | |
if t.dtype is torch.float32: | |
return t.to(dtype=torch.half) | |
return t | |
# Function for image captioning | |
def open_domain_vqa(Image, Question): | |
sample = construct_sample(Image, Question) | |
sample = utils.move_to_cuda(sample) if use_cuda else sample | |
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample | |
# Run eval step for open-domain VQA | |
with torch.no_grad(): | |
result, scores = zero_shot_step(task, generator, models, sample) | |
return result[0]['answer'] | |
title = "OFA-Visual_Question_Answering" | |
description = "Gradio Demo for OFA-Visual_Question_Answering. Upload your own image (high-resolution images are recommended) or click any one of the examples, and click " \ | |
"\"Submit\" and then wait for OFA's answer. " | |
article = "<p style='text-align: center'><a href='https://github.com/OFA-Sys/OFA' target='_blank'>OFA Github " \ | |
"Repo</a></p> " | |
examples = [['cat-4894153_1920.jpg', 'where are the cats?'], ['men-6245003_1920.jpg', 'how many people are in the image?'], ['labrador-retriever-7004193_1920.jpg', 'what breed is the dog in the picture?'], ['Starry_Night.jpeg', 'what style does the picture belong to?']] | |
io = gr.Interface(fn=open_domain_vqa, inputs=[gr.inputs.Image(type='pil'), "textbox"], outputs=gr.outputs.Textbox(label="Answer"), | |
title=title, description=description, article=article, examples=examples, | |
allow_flagging=False, allow_screenshot=False) | |
io.launch(cache_examples=True) |