Spaces:
Runtime error
Runtime error
File size: 22,095 Bytes
031beb8 04aa62c 031beb8 681ba0c 031beb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
import os
from typing import Dict
import gradio as gr
import pandas as pd
from chat_task.chat import generate_chat
from doc_qa_task.doc_qa import generate_doc_qa
from examples import (
load_examples,
preprocess_docqa_examples,
preprocess_extraction_examples,
preprocess_qa_generator_examples,
)
from extract_data_task.extract import extract_slots
from plugin_task.api import api_plugin_chat
from qa_generator_task.generate_qa import generate_qa_pairs
from plugin_task.plugins import PLUGIN_JSON_SCHEMA
abs_path = os.path.abspath(__file__)
current_dir = os.path.dirname(abs_path)
statistic_path = os.path.join(current_dir, "images")
load_examples()
def clear_session():
"""Clears the chat session."""
return "", None
def clear_plugin_session(session: Dict):
"""Clears the plugin session."""
session.clear()
return session, None, None
def show_custom_fallback_textbox(x):
if x == "自定义话术":
return [gr.Row(visible=True), gr.Textbox()]
else:
return [gr.Row(visible=False), gr.Textbox()]
def validate_field_word_count(
input_text: str, description: str, max_word_count: int = 3000
):
"""
Validate the input text for word count
:param input_text:
:return:
"""
if len(input_text) == 0:
raise gr.Error(f"{description}不能为空")
if len(input_text) > max_word_count:
raise gr.Error(f"{description}字数不能超过{max_word_count}字")
def validate_chat(input_text: str):
"""
Validate the input text
:param input_text:
:return:
"""
validate_field_word_count(input_text, "输入", 500)
def validate_doc_qa(
input_text: str,
doc_df: "pd.DataFrame",
fallback_ratio: str,
fallback_text_input: str,
):
"""
Validate fields of doc_qa
:param input_text:
:param doc_df:
:param fallback_ratio:
:param fallback_text_input:
:return:
"""
# add all the doc ids to the input text
if fallback_ratio == "自定义话术":
validate_field_word_count(fallback_text_input, "自定义话术", 100)
validate_field_word_count(input_text, "输入", 500)
page_content_full_text = (
" ".join(doc_df["文档片段名称"].tolist())
+ " "
+ " ".join(doc_df["文档片段内容"].tolist())
)
validate_field_word_count(page_content_full_text, "文档信息", 2500)
def validate_qa_pair_generator(input_text: str):
"""
Validate the input text
:param input_text:
:return:
"""
return validate_field_word_count(input_text, "输入")
def validate_extraction(
input_text: str,
extraction_df: "pd.DataFrame",
):
"""
Validate fields of extraction
"""
extraction_full_text = (
" ".join(extraction_df["字段名称"].tolist())
+ " "
+ " ".join(extraction_df["字段描述"].tolist())
)
validate_field_word_count(input_text, "输入", 1500)
validate_field_word_count(extraction_full_text, "待抽取字段描述", 1500)
def validate_plugin(input_text: str):
"""
Validate the input text
:param input_text:
:return:
"""
validate_field_word_count(input_text, "输入", 500)
with gr.Blocks(
title="Orion-14B",
theme="shivi/calm_seafoam@>=0.0.1,<1.0.0",
) as demo:
def user(user_message, history):
return user_message, (history or []) + [[user_message, ""]]
gr.Markdown(
"""
<div style="overflow: hidden;color:#fff;display: flex;flex-direction: column;align-items: center; position: relative; width: 100%; height: 180px;background-size: cover; background-image: url(https://www.orionstar.com/res/orics/down/ow001_20240119_8369eca9013416109a2303bf4e329140.png);">
<img style="width: 130px;height: 60px;position: absolute;top:10px;left:10px" src="https://www.orionstar.com/res/orics/down/ow001_20240119_1236eba7ea0ac15931f4518d7f211d47.png"/>
<img style="min-width: 1416px; width: 1416px;height: 100px;margin-top: 30px;" src="https://www.orionstar.com/res/orics/down/ow001_20240119_10c5ca12a57116bda0e35916a28b247f.png"/>
<span style="margin-top: 10px;font-size: 12px;">请在<a href="https://github.com/OrionStarAI/Orion" style="color: white;">Github</a>点击Star支持我们,加入<a href="https://www.orionstar.com/res/orics/down/ow001_20240122_d87e5b4ea66a31493c38fcffe7bdb453.png" style="color: white;">官方微信交流群</a></span>
</div>
"""
)
with gr.Tab("基础能力"):
chatbot = gr.Chatbot(
label="Orion-14B-Chat",
elem_classes="control-height",
show_copy_button=True,
min_width=1368,
height=416,
)
chat_text_input = gr.Textbox(label="输入", min_width=1368)
with gr.Row():
with gr.Column(scale=2):
gr.Examples(
[
"可以给我讲个笑话吗?",
"什么是伟大的诗歌?",
"你知道李白吗?",
"黑洞是如何工作的?",
"在表中插入一条数据,id为1,name为张三,age为18,请问SQL语句是什么?",
],
chat_text_input,
label="试试问",
)
with gr.Column(scale=1):
with gr.Row(variant="compact"):
clear_history = gr.Button(
"清除历史",
min_width="17",
size="sm",
scale=1,
icon=os.path.join(statistic_path, "clear.png"),
)
submit = gr.Button(
"发送",
variant="primary",
min_width="17",
size="sm",
scale=1,
icon=os.path.join(statistic_path, "send.svg"),
)
chat_text_input.submit(
fn=validate_chat, inputs=[chat_text_input], outputs=[], queue=False
).success(
user, [chat_text_input, chatbot], [chat_text_input, chatbot], queue=False
).success(
fn=generate_chat,
inputs=[chat_text_input, chatbot],
outputs=[chat_text_input, chatbot],
)
submit.click(
fn=validate_chat, inputs=[chat_text_input], outputs=[], queue=False
).success(
user, [chat_text_input, chatbot], [chat_text_input, chatbot], queue=False
).success(
fn=generate_chat,
inputs=[chat_text_input, chatbot],
outputs=[chat_text_input, chatbot],
api_name="chat",
)
clear_history.click(
fn=clear_session, inputs=[], outputs=[chat_text_input, chatbot], queue=False
)
with gr.Tab("基于文档问答"):
with gr.Row():
with gr.Column(scale=3, min_width=357, variant="panel"):
gr.Markdown(
'<span style="color:rgba(0, 0, 0, 0.5); font-size: 14px; font-weight: 400; line-height: 28px; letter-spacing: 0em; text-align: left; width: 42px; height: 14px; left: 36px; top: 255px;">配置项</span>'
)
citations_radio = gr.Radio(
["开启引用", "关闭引用"], label="引用", value="关闭引用"
)
fallback_radio = gr.Radio(
["使用大模型知识", "自定义话术"],
label="超纲问题回复",
value="自定义话术",
)
fallback_text_input = gr.Textbox(
label="自定义话术",
value="抱歉,我还在学习中,暂时无法回答您的问题。",
)
gr.Markdown(
'<span style="color:rgba(0, 0, 0, 0.5); font-size: 14px; font-weight: 400; line-height: 28px; letter-spacing: 0em; text-align: left; width: 42px; height: 14px; left: 36px; top: 255px;">文档信息</span>'
)
doc_df = gr.Dataframe(
headers=["文档片段内容", "文档片段名称"],
datatype=["str", "str"],
row_count=6,
col_count=(2, "fixed"),
label="",
interactive=True,
wrap=True,
elem_classes="control-height",
height=300,
)
with gr.Column(scale=2, min_width=430):
chatbot = gr.Chatbot(
label="适用场景:预期LLM通过自由知识回答",
elem_classes="control-height",
show_copy_button=True,
min_width=999,
height=419,
)
doc_qa_input = gr.Textbox(label="输入", min_width=999, max_lines=10)
with gr.Row():
with gr.Column(scale=2):
gr.Examples(
[
"哪些情况下不能超车?",
"参观须知",
"青岛啤酒酒精含量是多少?",
],
doc_qa_input,
label="试试问",
cache_examples=True,
fn=preprocess_docqa_examples,
outputs=[doc_df],
)
with gr.Column(scale=1):
with gr.Row(variant="compact"):
clear_history = gr.Button(
"清除历史",
min_width="17",
size="sm",
scale=1,
icon=os.path.join(statistic_path, "clear.png"),
)
submit = gr.Button(
"发送",
variant="primary",
min_width="17",
size="sm",
scale=1,
icon=os.path.join(statistic_path, "send.svg"),
)
doc_qa_input.submit(
fn=validate_doc_qa,
inputs=[
doc_qa_input,
doc_df,
fallback_radio,
fallback_text_input,
],
outputs=[],
queue=False,
).success(
user, [doc_qa_input, chatbot], [doc_qa_input, chatbot], queue=False
).success(
fn=generate_doc_qa,
inputs=[
doc_qa_input,
chatbot,
doc_df,
fallback_radio,
fallback_text_input,
citations_radio,
],
outputs=[doc_qa_input, chatbot],
scroll_to_output=True,
api_name="doc_qa",
)
submit.click(
fn=validate_doc_qa,
inputs=[
doc_qa_input,
doc_df,
fallback_radio,
fallback_text_input,
],
outputs=[],
queue=False,
).success(
user, [doc_qa_input, chatbot], [doc_qa_input, chatbot], queue=False
).success(
fn=generate_doc_qa,
inputs=[
doc_qa_input,
chatbot,
doc_df,
fallback_radio,
fallback_text_input,
citations_radio,
],
outputs=[doc_qa_input, chatbot],
scroll_to_output=True,
)
clear_history.click(
fn=lambda x: (None, None, None),
inputs=[],
outputs=[doc_df, doc_qa_input, chatbot],
queue=False,
)
with gr.Tab("插件能力"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
'<span style="color:rgba(0, 0, 0, 0.5); font-size: 14px; font-weight: 400; line-height: 28px; letter-spacing: 0em; text-align: left; width: 42px; height: 14px; left: 36px; top: 255px;">配置项</span>'
)
radio_plugins = [
gr.Radio(
["开启", "关闭"],
label=plugin_json["name_for_human"],
value="开启",
)
for plugin_json in PLUGIN_JSON_SCHEMA
]
with gr.Column(scale=3):
session = gr.State(value=dict())
chatbot = gr.Chatbot(
label="适用场景:需要LLM调用API解决问题",
elem_classes="control-height",
show_copy_button=True,
)
plugin_text_input = gr.Textbox(label="输入")
with gr.Row():
with gr.Column(scale=2):
gr.Examples(
[
"北京天气怎么样?",
"查询物流信息",
"每日壁纸",
"bing今天的壁纸是什么",
"查询手机号码归属地",
],
plugin_text_input,
label="试试问",
)
with gr.Column(scale=1):
with gr.Row(variant="compact"):
clear_history = gr.Button(
"清除历史",
min_width="17",
size="sm",
scale=1,
icon=os.path.join(statistic_path, "clear.png"),
)
submit = gr.Button(
"发送",
variant="primary",
min_width="17",
size="sm",
scale=1,
icon=os.path.join(statistic_path, "send.svg"),
)
plugin_text_input.submit(
fn=validate_plugin,
inputs=[
plugin_text_input,
],
outputs=[],
queue=False,
).success(
user,
[plugin_text_input, chatbot],
[plugin_text_input, chatbot],
scroll_to_output=True,
).success(
fn=api_plugin_chat,
inputs=[session, plugin_text_input, chatbot, *radio_plugins],
outputs=[session, plugin_text_input, chatbot],
scroll_to_output=True,
)
submit.click(
fn=validate_plugin,
inputs=[
plugin_text_input,
],
outputs=[],
queue=False,
).success(
user,
[plugin_text_input, chatbot],
[plugin_text_input, chatbot],
scroll_to_output=True,
).success(
fn=api_plugin_chat,
inputs=[session, plugin_text_input, chatbot, *radio_plugins],
outputs=[session, plugin_text_input, chatbot],
api_name="plugin",
scroll_to_output=True,
)
clear_history.click(
fn=clear_plugin_session,
inputs=[session],
outputs=[session, plugin_text_input, chatbot],
queue=False,
)
with gr.Tab("生成QA对"):
with gr.Row(equal_height=True):
qa_generator_output = gr.Code(
language="json",
show_label=False,
min_width=1368,
)
with gr.Row():
qa_generator_input = gr.Textbox(
label="输入",
show_label=True,
info="",
min_width=1368,
lines=5,
max_lines=10,
)
with gr.Row():
with gr.Column(scale=2):
gr.Examples(
[
"第一章 总 则 \n第...",
"金字塔,在建筑学上是...",
"山西老陈醋是以高粱、...",
"室内装饰构造虚拟仿真...",
"猎户星空(Orion...",
],
qa_generator_input,
label="试试问",
cache_examples=True,
fn=preprocess_qa_generator_examples,
outputs=[qa_generator_input],
)
with gr.Column(scale=1):
with gr.Row(variant="compact"):
clear = gr.Button(
"清除",
min_width="17",
size="sm",
scale=1,
icon=os.path.join(statistic_path, "clear.png"),
)
submit = gr.Button(
"发送",
variant="primary",
min_width="17",
size="sm",
scale=1,
icon=os.path.join(statistic_path, "send.svg"),
)
submit.click(
fn=validate_qa_pair_generator,
inputs=[qa_generator_input],
outputs=[],
).success(
fn=generate_qa_pairs,
inputs=[qa_generator_input],
outputs=[qa_generator_output, qa_generator_input],
scroll_to_output=True,
api_name="qa_generator",
)
clear.click(
fn=lambda x: ("", ""),
inputs=[],
outputs=[qa_generator_input, qa_generator_output],
queue=False,
)
with gr.Tab("抽取数据"):
extract_outpu_df = gr.Dataframe(
label="",
headers=["字段名称", "字段抽取结果"],
datatype=["str", "str"],
col_count=(2, "fixed"),
wrap=True,
elem_classes="control-height",
height=234,
row_count=5,
)
extract_input = gr.Textbox(label="输入", lines=5, min_width=1368, max_lines=10)
extraction_df = gr.Dataframe(
headers=["字段名称", "字段描述"],
datatype=["str", "str"],
row_count=3,
col_count=(2, "fixed"),
label="",
interactive=True,
wrap=True,
elem_classes="control-height",
height=180,
)
with gr.Row():
with gr.Column(scale=2):
gr.Examples(
["第一条合同当...", "发票编号: IN...", "发件人:John..."],
extract_input,
label="试试问",
cache_examples=True,
fn=preprocess_extraction_examples,
outputs=[extract_input, extraction_df],
)
with gr.Column(scale=1):
with gr.Row(variant="compact"):
clear = gr.Button(
"清除历史",
min_width="17",
size="sm",
scale=1,
icon=os.path.join(statistic_path, "clear.png"),
)
submit = gr.Button(
"发送",
variant="primary",
min_width="17",
size="sm",
scale=1,
icon=os.path.join(statistic_path, "send.svg"),
)
submit.click(
fn=validate_extraction,
inputs=[extract_input, extraction_df],
outputs=[],
).success(
fn=extract_slots,
inputs=[extract_input, extraction_df],
outputs=[extract_outpu_df],
scroll_to_output=True,
api_name="extract",
)
clear.click(
fn=lambda x: ("", None, None),
inputs=[],
outputs=[
extract_input,
extraction_df,
extract_outpu_df,
],
queue=False,
)
if __name__ == "__main__":
demo.queue(api_open=False, max_size=40).launch(
height=800,
share=False,
server_name="0.0.0.0",
show_api=False,
max_threads=4,
)
|