File size: 22,095 Bytes
031beb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04aa62c
031beb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
681ba0c
 
031beb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import os
from typing import Dict

import gradio as gr
import pandas as pd

from chat_task.chat import generate_chat
from doc_qa_task.doc_qa import generate_doc_qa
from examples import (
    load_examples,
    preprocess_docqa_examples,
    preprocess_extraction_examples,
    preprocess_qa_generator_examples,
)
from extract_data_task.extract import extract_slots
from plugin_task.api import api_plugin_chat
from qa_generator_task.generate_qa import generate_qa_pairs
from plugin_task.plugins import PLUGIN_JSON_SCHEMA


abs_path = os.path.abspath(__file__)
current_dir = os.path.dirname(abs_path)
statistic_path = os.path.join(current_dir, "images")

load_examples()


def clear_session():
    """Clears the chat session."""
    return "", None


def clear_plugin_session(session: Dict):
    """Clears the plugin session."""
    session.clear()
    return session, None, None


def show_custom_fallback_textbox(x):
    if x == "自定义话术":
        return [gr.Row(visible=True), gr.Textbox()]
    else:
        return [gr.Row(visible=False), gr.Textbox()]


def validate_field_word_count(
    input_text: str, description: str, max_word_count: int = 3000
):
    """
    Validate the input text for word count

    :param input_text:
    :return:
    """
    if len(input_text) == 0:
        raise gr.Error(f"{description}不能为空")

    if len(input_text) > max_word_count:
        raise gr.Error(f"{description}字数不能超过{max_word_count}字")


def validate_chat(input_text: str):
    """
    Validate the input text

    :param input_text:
    :return:
    """
    validate_field_word_count(input_text, "输入", 500)


def validate_doc_qa(
    input_text: str,
    doc_df: "pd.DataFrame",
    fallback_ratio: str,
    fallback_text_input: str,
):
    """
    Validate fields of doc_qa
    :param input_text:
    :param doc_df:
    :param fallback_ratio:
    :param fallback_text_input:
    :return:
    """
    # add all the doc ids to the input text
    if fallback_ratio == "自定义话术":
        validate_field_word_count(fallback_text_input, "自定义话术", 100)

    validate_field_word_count(input_text, "输入", 500)

    page_content_full_text = (
        " ".join(doc_df["文档片段名称"].tolist())
        + " "
        + " ".join(doc_df["文档片段内容"].tolist())
    )
    validate_field_word_count(page_content_full_text, "文档信息", 2500)


def validate_qa_pair_generator(input_text: str):
    """
    Validate the input text

    :param input_text:
    :return:
    """
    return validate_field_word_count(input_text, "输入")


def validate_extraction(
    input_text: str,
    extraction_df: "pd.DataFrame",
):
    """
    Validate fields of extraction
    """
    extraction_full_text = (
        " ".join(extraction_df["字段名称"].tolist())
        + " "
        + " ".join(extraction_df["字段描述"].tolist())
    )
    validate_field_word_count(input_text, "输入", 1500)
    validate_field_word_count(extraction_full_text, "待抽取字段描述", 1500)


def validate_plugin(input_text: str):
    """
    Validate the input text

    :param input_text:
    :return:
    """
    validate_field_word_count(input_text, "输入", 500)


with gr.Blocks(
    title="Orion-14B",
    theme="shivi/calm_seafoam@>=0.0.1,<1.0.0",
) as demo:

    def user(user_message, history):
        return user_message, (history or []) + [[user_message, ""]]

    gr.Markdown(
        """
        <div style="overflow: hidden;color:#fff;display: flex;flex-direction: column;align-items: center; position: relative; width: 100%; height: 180px;background-size: cover; background-image: url(https://www.orionstar.com/res/orics/down/ow001_20240119_8369eca9013416109a2303bf4e329140.png);">
            <img style="width: 130px;height: 60px;position: absolute;top:10px;left:10px" src="https://www.orionstar.com/res/orics/down/ow001_20240119_1236eba7ea0ac15931f4518d7f211d47.png"/>
            <img style="min-width: 1416px; width: 1416px;height: 100px;margin-top: 30px;" src="https://www.orionstar.com/res/orics/down/ow001_20240119_10c5ca12a57116bda0e35916a28b247f.png"/>
            <span style="margin-top: 10px;font-size: 12px;">请在<a href="https://github.com/OrionStarAI/Orion" style="color: white;">Github</a>点击Star支持我们,加入<a href="https://www.orionstar.com/res/orics/down/ow001_20240122_d87e5b4ea66a31493c38fcffe7bdb453.png" style="color: white;">官方微信交流群</a></span>
        </div>
"""
    )
    with gr.Tab("基础能力"):
        chatbot = gr.Chatbot(
            label="Orion-14B-Chat",
            elem_classes="control-height",
            show_copy_button=True,
            min_width=1368,
            height=416,
        )
        chat_text_input = gr.Textbox(label="输入", min_width=1368)

        with gr.Row():
            with gr.Column(scale=2):
                gr.Examples(
                    [
                        "可以给我讲个笑话吗?",
                        "什么是伟大的诗歌?",
                        "你知道李白吗?",
                        "黑洞是如何工作的?",
                        "在表中插入一条数据,id为1,name为张三,age为18,请问SQL语句是什么?",
                    ],
                    chat_text_input,
                    label="试试问",
                )
            with gr.Column(scale=1):
                with gr.Row(variant="compact"):
                    clear_history = gr.Button(
                        "清除历史",
                        min_width="17",
                        size="sm",
                        scale=1,
                        icon=os.path.join(statistic_path, "clear.png"),
                    )
                    submit = gr.Button(
                        "发送",
                        variant="primary",
                        min_width="17",
                        size="sm",
                        scale=1,
                        icon=os.path.join(statistic_path, "send.svg"),
                    )

        chat_text_input.submit(
            fn=validate_chat, inputs=[chat_text_input], outputs=[], queue=False
        ).success(
            user, [chat_text_input, chatbot], [chat_text_input, chatbot], queue=False
        ).success(
            fn=generate_chat,
            inputs=[chat_text_input, chatbot],
            outputs=[chat_text_input, chatbot],
        )

        submit.click(
            fn=validate_chat, inputs=[chat_text_input], outputs=[], queue=False
        ).success(
            user, [chat_text_input, chatbot], [chat_text_input, chatbot], queue=False
        ).success(
            fn=generate_chat,
            inputs=[chat_text_input, chatbot],
            outputs=[chat_text_input, chatbot],
            api_name="chat",
        )

        clear_history.click(
            fn=clear_session, inputs=[], outputs=[chat_text_input, chatbot], queue=False
        )

    with gr.Tab("基于文档问答"):
        with gr.Row():
            with gr.Column(scale=3, min_width=357, variant="panel"):
                gr.Markdown(
                    '<span style="color:rgba(0, 0, 0, 0.5); font-size: 14px; font-weight: 400; line-height: 28px; letter-spacing: 0em; text-align: left; width: 42px; height: 14px; left: 36px; top: 255px;">配置项</span>'
                )
                citations_radio = gr.Radio(
                    ["开启引用", "关闭引用"], label="引用", value="关闭引用"
                )
                fallback_radio = gr.Radio(
                    ["使用大模型知识", "自定义话术"],
                    label="超纲问题回复",
                    value="自定义话术",
                )
                fallback_text_input = gr.Textbox(
                    label="自定义话术",
                    value="抱歉,我还在学习中,暂时无法回答您的问题。",
                )

                gr.Markdown(
                    '<span style="color:rgba(0, 0, 0, 0.5); font-size: 14px; font-weight: 400; line-height: 28px; letter-spacing: 0em; text-align: left; width: 42px; height: 14px; left: 36px; top: 255px;">文档信息</span>'
                )

                doc_df = gr.Dataframe(
                    headers=["文档片段内容", "文档片段名称"],
                    datatype=["str", "str"],
                    row_count=6,
                    col_count=(2, "fixed"),
                    label="",
                    interactive=True,
                    wrap=True,
                    elem_classes="control-height",
                    height=300,
                )

            with gr.Column(scale=2, min_width=430):
                chatbot = gr.Chatbot(
                    label="适用场景:预期LLM通过自由知识回答",
                    elem_classes="control-height",
                    show_copy_button=True,
                    min_width=999,
                    height=419,
                )

                doc_qa_input = gr.Textbox(label="输入", min_width=999, max_lines=10)

                with gr.Row():
                    with gr.Column(scale=2):
                        gr.Examples(
                            [
                                "哪些情况下不能超车?",
                                "参观须知",
                                "青岛啤酒酒精含量是多少?",
                            ],
                            doc_qa_input,
                            label="试试问",
                            cache_examples=True,
                            fn=preprocess_docqa_examples,
                            outputs=[doc_df],
                        )
                    with gr.Column(scale=1):
                        with gr.Row(variant="compact"):
                            clear_history = gr.Button(
                                "清除历史",
                                min_width="17",
                                size="sm",
                                scale=1,
                                icon=os.path.join(statistic_path, "clear.png"),
                            )
                            submit = gr.Button(
                                "发送",
                                variant="primary",
                                min_width="17",
                                size="sm",
                                scale=1,
                                icon=os.path.join(statistic_path, "send.svg"),
                            )

                doc_qa_input.submit(
                    fn=validate_doc_qa,
                    inputs=[
                        doc_qa_input,
                        doc_df,
                        fallback_radio,
                        fallback_text_input,
                    ],
                    outputs=[],
                    queue=False,
                ).success(
                    user, [doc_qa_input, chatbot], [doc_qa_input, chatbot], queue=False
                ).success(
                    fn=generate_doc_qa,
                    inputs=[
                        doc_qa_input,
                        chatbot,
                        doc_df,
                        fallback_radio,
                        fallback_text_input,
                        citations_radio,
                    ],
                    outputs=[doc_qa_input, chatbot],
                    scroll_to_output=True,
                    api_name="doc_qa",
                )

                submit.click(
                    fn=validate_doc_qa,
                    inputs=[
                        doc_qa_input,
                        doc_df,
                        fallback_radio,
                        fallback_text_input,
                    ],
                    outputs=[],
                    queue=False,
                ).success(
                    user, [doc_qa_input, chatbot], [doc_qa_input, chatbot], queue=False
                ).success(
                    fn=generate_doc_qa,
                    inputs=[
                        doc_qa_input,
                        chatbot,
                        doc_df,
                        fallback_radio,
                        fallback_text_input,
                        citations_radio,
                    ],
                    outputs=[doc_qa_input, chatbot],
                    scroll_to_output=True,
                )

                clear_history.click(
                    fn=lambda x: (None, None, None),
                    inputs=[],
                    outputs=[doc_df, doc_qa_input, chatbot],
                    queue=False,
                )

    with gr.Tab("插件能力"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown(
                    '<span style="color:rgba(0, 0, 0, 0.5); font-size: 14px; font-weight: 400; line-height: 28px; letter-spacing: 0em; text-align: left; width: 42px; height: 14px; left: 36px; top: 255px;">配置项</span>'
                )

                radio_plugins = [
                    gr.Radio(
                        ["开启", "关闭"],
                        label=plugin_json["name_for_human"],
                        value="开启",
                    )
                    for plugin_json in PLUGIN_JSON_SCHEMA
                ]

            with gr.Column(scale=3):
                session = gr.State(value=dict())
                chatbot = gr.Chatbot(
                    label="适用场景:需要LLM调用API解决问题",
                    elem_classes="control-height",
                    show_copy_button=True,
                )
                plugin_text_input = gr.Textbox(label="输入")
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.Examples(
                            [
                                "北京天气怎么样?",
                                "查询物流信息",
                                "每日壁纸",
                                "bing今天的壁纸是什么",
                                "查询手机号码归属地",
                            ],
                            plugin_text_input,
                            label="试试问",
                        )
                    with gr.Column(scale=1):
                        with gr.Row(variant="compact"):
                            clear_history = gr.Button(
                                "清除历史",
                                min_width="17",
                                size="sm",
                                scale=1,
                                icon=os.path.join(statistic_path, "clear.png"),
                            )
                            submit = gr.Button(
                                "发送",
                                variant="primary",
                                min_width="17",
                                size="sm",
                                scale=1,
                                icon=os.path.join(statistic_path, "send.svg"),
                            )

                plugin_text_input.submit(
                    fn=validate_plugin,
                    inputs=[
                        plugin_text_input,
                    ],
                    outputs=[],
                    queue=False,
                ).success(
                    user,
                    [plugin_text_input, chatbot],
                    [plugin_text_input, chatbot],
                    scroll_to_output=True,
                ).success(
                    fn=api_plugin_chat,
                    inputs=[session, plugin_text_input, chatbot, *radio_plugins],
                    outputs=[session, plugin_text_input, chatbot],
                    scroll_to_output=True,
                )

                submit.click(
                    fn=validate_plugin,
                    inputs=[
                        plugin_text_input,
                    ],
                    outputs=[],
                    queue=False,
                ).success(
                    user,
                    [plugin_text_input, chatbot],
                    [plugin_text_input, chatbot],
                    scroll_to_output=True,
                ).success(
                    fn=api_plugin_chat,
                    inputs=[session, plugin_text_input, chatbot, *radio_plugins],
                    outputs=[session, plugin_text_input, chatbot],
                    api_name="plugin",
                    scroll_to_output=True,
                )

                clear_history.click(
                    fn=clear_plugin_session,
                    inputs=[session],
                    outputs=[session, plugin_text_input, chatbot],
                    queue=False,
                )
    with gr.Tab("生成QA对"):
        with gr.Row(equal_height=True):
            qa_generator_output = gr.Code(
                language="json",
                show_label=False,
                min_width=1368,
            )
        with gr.Row():
            qa_generator_input = gr.Textbox(
                label="输入",
                show_label=True,
                info="",
                min_width=1368,
                lines=5,
                max_lines=10,
            )

            with gr.Row():
                with gr.Column(scale=2):
                    gr.Examples(
                        [
                            "第一章 总 则 \n第...",
                            "金字塔,在建筑学上是...",
                            "山西老陈醋是以高粱、...",
                            "室内装饰构造虚拟仿真...",
                            "猎户星空(Orion...",
                        ],
                        qa_generator_input,
                        label="试试问",
                        cache_examples=True,
                        fn=preprocess_qa_generator_examples,
                        outputs=[qa_generator_input],
                    )
                with gr.Column(scale=1):
                    with gr.Row(variant="compact"):
                        clear = gr.Button(
                            "清除",
                            min_width="17",
                            size="sm",
                            scale=1,
                            icon=os.path.join(statistic_path, "clear.png"),
                        )
                        submit = gr.Button(
                            "发送",
                            variant="primary",
                            min_width="17",
                            size="sm",
                            scale=1,
                            icon=os.path.join(statistic_path, "send.svg"),
                        )

            submit.click(
                fn=validate_qa_pair_generator,
                inputs=[qa_generator_input],
                outputs=[],
            ).success(
                fn=generate_qa_pairs,
                inputs=[qa_generator_input],
                outputs=[qa_generator_output, qa_generator_input],
                scroll_to_output=True,
                api_name="qa_generator",
            )

            clear.click(
                fn=lambda x: ("", ""),
                inputs=[],
                outputs=[qa_generator_input, qa_generator_output],
                queue=False,
            )

    with gr.Tab("抽取数据"):
        extract_outpu_df = gr.Dataframe(
            label="",
            headers=["字段名称", "字段抽取结果"],
            datatype=["str", "str"],
            col_count=(2, "fixed"),
            wrap=True,
            elem_classes="control-height",
            height=234,
            row_count=5,
        )

        extract_input = gr.Textbox(label="输入", lines=5, min_width=1368, max_lines=10)

        extraction_df = gr.Dataframe(
            headers=["字段名称", "字段描述"],
            datatype=["str", "str"],
            row_count=3,
            col_count=(2, "fixed"),
            label="",
            interactive=True,
            wrap=True,
            elem_classes="control-height",
            height=180,
        )

        with gr.Row():
            with gr.Column(scale=2):
                gr.Examples(
                    ["第一条合同当...", "发票编号: IN...", "发件人:John..."],
                    extract_input,
                    label="试试问",
                    cache_examples=True,
                    fn=preprocess_extraction_examples,
                    outputs=[extract_input, extraction_df],
                )
            with gr.Column(scale=1):
                with gr.Row(variant="compact"):
                    clear = gr.Button(
                        "清除历史",
                        min_width="17",
                        size="sm",
                        scale=1,
                        icon=os.path.join(statistic_path, "clear.png"),
                    )
                    submit = gr.Button(
                        "发送",
                        variant="primary",
                        min_width="17",
                        size="sm",
                        scale=1,
                        icon=os.path.join(statistic_path, "send.svg"),
                    )

        submit.click(
            fn=validate_extraction,
            inputs=[extract_input, extraction_df],
            outputs=[],
        ).success(
            fn=extract_slots,
            inputs=[extract_input, extraction_df],
            outputs=[extract_outpu_df],
            scroll_to_output=True,
            api_name="extract",
        )

        clear.click(
            fn=lambda x: ("", None, None),
            inputs=[],
            outputs=[
                extract_input,
                extraction_df,
                extract_outpu_df,
            ],
            queue=False,
        )


if __name__ == "__main__":
    demo.queue(api_open=False, max_size=40).launch(
        height=800,
        share=False,
        server_name="0.0.0.0",
        show_api=False,
        max_threads=4,
    )