Spaces:
Build error
Build error
File size: 26,764 Bytes
1335bda 5d3f7a9 1335bda 8c638cc 1335bda 8c638cc 1335bda 8c638cc 2650437 1335bda 2650437 8c638cc 2650437 8c638cc 2650437 b66f09d 2650437 8c638cc 2650437 8c638cc 1335bda 2650437 1335bda 2650437 1335bda 2650437 1335bda 2650437 1335bda 8c638cc 1335bda 9103754 1335bda 9103754 1335bda 9103754 7275554 1335bda 8c638cc 2650437 1335bda 2650437 10d0895 8c638cc 2650437 8c638cc 1335bda 2650437 8c638cc 2650437 8c638cc 2650437 8c638cc 2650437 8c638cc 2650437 8c638cc 2650437 8c638cc 2650437 7275554 10d0895 2650437 8c638cc 2650437 1335bda 2be337c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import torch
import transformers
from transformers import PreTrainedTokenizerFast
import tranception
import datasets
from tranception import config, model_pytorch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
#######################################################################################################################################
############################################### HELPER FUNCTIONS ####################################################################
#######################################################################################################################################
AA_vocab = "ACDEFGHIKLMNPQRSTVWY"
tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer",
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]"
)
def create_all_single_mutants(sequence,AA_vocab=AA_vocab,mutation_range_start=None,mutation_range_end=None):
all_single_mutants={}
sequence_list=list(sequence)
if mutation_range_start is None: mutation_range_start=1
if mutation_range_end is None: mutation_range_end=len(sequence)
for position,current_AA in enumerate(sequence[mutation_range_start-1:mutation_range_end]):
for mutated_AA in AA_vocab:
if current_AA!=mutated_AA:
mutated_sequence = sequence_list.copy()
mutated_sequence[position] = mutated_AA
all_single_mutants[current_AA+str(position+1)+mutated_AA]="".join(mutated_sequence)
all_single_mutants = pd.DataFrame.from_dict(all_single_mutants,columns=['mutated_sequence'],orient='index')
all_single_mutants.reset_index(inplace=True)
all_single_mutants.columns = ['mutant','mutated_sequence']
return all_single_mutants
def create_scoring_matrix_visual(scores,sequence,image_index=0,mutation_range_start=None,mutation_range_end=None,AA_vocab=AA_vocab,annotate=True,fontsize=20):
filtered_scores=scores.copy()
filtered_scores=filtered_scores[filtered_scores.position.isin(range(mutation_range_start,mutation_range_end+1))]
piv=filtered_scores.pivot(index='position',columns='target_AA',values='avg_score').round(4)
mutation_range_len = mutation_range_end - mutation_range_start + 1
fig, ax = plt.subplots(figsize=(50,mutation_range_len))
scores_dict = {}
valid_mutant_set=set(filtered_scores.mutant)
ax.tick_params(bottom=True, top=True, left=True, right=True)
ax.tick_params(labelbottom=True, labeltop=True, labelleft=True, labelright=True)
if annotate:
for position in range(mutation_range_start,mutation_range_end+1):
for target_AA in list(AA_vocab):
mutant = sequence[position-1]+str(position)+target_AA
if mutant in valid_mutant_set:
scores_dict[mutant]= float(filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score'])
else:
scores_dict[mutant]=0.0
labels = (np.asarray(["{} \n {:.4f}".format(symb,value) for symb, value in scores_dict.items() ])).reshape(mutation_range_len,len(AA_vocab))
heat = sns.heatmap(piv,annot=labels,fmt="",cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
else:
heat = sns.heatmap(piv,cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
heat.figure.axes[-1].yaxis.label.set_size(fontsize=int(fontsize*1.5))
heat.figure.axes[-1].yaxis.set_ticklabels(heat.figure.axes[-1].yaxis.get_ticklabels(), fontsize=fontsize)
heat.set_title("Higher predicted scores (green) imply higher protein fitness",fontsize=fontsize*2, pad=40)
heat.set_ylabel("Sequence position", fontsize = fontsize*2)
heat.set_xlabel("Amino Acid mutation", fontsize = fontsize*2)
yticklabels = [str(pos)+' ('+sequence[pos-1]+')' for pos in range(mutation_range_start,mutation_range_end+1)]
heat.set_yticklabels(yticklabels)
heat.set_xticklabels(heat.get_xmajorticklabels(), fontsize = fontsize)
heat.set_yticklabels(heat.get_ymajorticklabels(), fontsize = fontsize, rotation=0)
plt.tight_layout()
image_path = 'fitness_scoring_substitution_matrix_{}.png'.format(image_index)
plt.savefig(image_path,dpi=100)
plt.show()
return image_path
def suggest_mutations(scores):
intro_message = "The following mutations may be sensible options to improve fitness: \n\n"
#Best mutants
top_mutants=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).mutant)
top_mutants_fitness=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).avg_score)
top_mutants_recos = [top_mutant+" ("+str(round(top_mutant_fitness,4))+")" for (top_mutant,top_mutant_fitness) in zip(top_mutants,top_mutants_fitness)]
mutant_recos = "The single mutants with highest predicted fitness are (positive scores indicate fitness increase Vs starting sequence, negative scores indicate fitness decrease):\n {} \n\n".format(", ".join(top_mutants_recos))
#Best positions
positive_scores = scores[scores.avg_score > 0]
positive_scores_position_avg = positive_scores.groupby(['position']).mean()
top_positions=list(positive_scores_position_avg.sort_values(by=['avg_score'],ascending=False).head(5).index.astype(str))
position_recos = "The positions with the highest average fitness increase are (only positions with at least one fitness increase are considered):\n {}".format(", ".join(top_positions))
return intro_message+mutant_recos+position_recos
def check_valid_mutant(sequence,mutant,AA_vocab=AA_vocab):
valid = True
try:
from_AA, position, to_AA = mutant[0], int(mutant[1:-1]), mutant[-1]
except:
valid = False
if sequence[position-1]!=from_AA: valid=False
if position<1 or position>len(sequence): valid=False
if to_AA not in AA_vocab: valid=False
return valid
def get_mutated_protein(sequence,mutant):
assert check_valid_mutant(sequence,mutant), "The mutant is not valid"
mutated_sequence = list(sequence)
mutated_sequence[int(mutant[1:-1])-1]=mutant[-1]
return ''.join(mutated_sequence)
def score_and_create_matrix_all_singles(sequence,mutation_range_start=None,mutation_range_end=None,model_type="Small",scoring_mirror=False,batch_size_inference=20,max_number_positions_per_heatmap=50,num_workers=0,AA_vocab=AA_vocab):
if mutation_range_start is None: mutation_range_start=1
if mutation_range_end is None: mutation_range_end=len(sequence)
assert len(sequence) > 0, "no sequence entered"
assert mutation_range_start <= mutation_range_end, "mutation range is invalid"
if model_type=="Small":
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path="PascalNotin/Tranception_Small")
elif model_type=="Medium":
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path="PascalNotin/Tranception_Medium")
elif model_type=="Large":
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(pretrained_model_name_or_path="PascalNotin/Tranception_Large")
if torch.cuda.is_available():
model.cuda()
print("Inference will take place on GPU")
else:
print("Inference will take place on CPU")
model.config.tokenizer = tokenizer
all_single_mutants = create_all_single_mutants(sequence,AA_vocab,mutation_range_start,mutation_range_end)
scores = model.score_mutants(DMS_data=all_single_mutants,
target_seq=sequence,
scoring_mirror=scoring_mirror,
batch_size_inference=batch_size_inference,
num_workers=num_workers,
indel_mode=False
)
scores = pd.merge(scores,all_single_mutants,on="mutated_sequence",how="left")
scores["position"]=scores["mutant"].map(lambda x: int(x[1:-1]))
scores["target_AA"] = scores["mutant"].map(lambda x: x[-1])
score_heatmaps = []
mutation_range = mutation_range_end - mutation_range_start + 1
number_heatmaps = int((mutation_range - 1) / max_number_positions_per_heatmap) + 1
image_index = 0
window_start = mutation_range_start
window_end = min(mutation_range_end,mutation_range_start+max_number_positions_per_heatmap-1)
for image_index in range(number_heatmaps):
score_heatmaps.append(create_scoring_matrix_visual(scores,sequence,image_index,window_start,window_end,AA_vocab))
window_start += max_number_positions_per_heatmap
window_end = min(mutation_range_end,window_start+max_number_positions_per_heatmap-1)
return score_heatmaps, suggest_mutations(scores)
def extract_sequence(example):
label, taxon, sequence = example
return sequence
def clear_inputs(protein_sequence_input,mutation_range_start,mutation_range_end):
protein_sequence_input = ""
mutation_range_start = None
mutation_range_end = None
return protein_sequence_input,mutation_range_start,mutation_range_end
#######################################################################################################################################
############################################### GRADIO INTERFACE ####################################################################
#######################################################################################################################################
tranception_design = gr.Blocks()
with tranception_design:
gr.Markdown("# In silico directed evolution for protein redesign with Tranception")
gr.Markdown(" Perform in silico directed evolution with Tranception to iteratively improve the fitness of a protein of interest, one mutation at a time. At each step, the Tranception model computes the log likelihood ratios of all possible single amino acid substitution Vs the starting sequence, and outputs a fitness heatmap and recommandations to guide the selection of the mutation to apply.")
with gr.Tabs():
with gr.TabItem("Input"):
with gr.Row():
protein_sequence_input = gr.Textbox(lines=1,
label="Protein sequence",
placeholder = "Input the sequence of amino acids representing the starting protein of interest or select one from the list of examples below. You may enter the full sequence or just a subdomain (providing full context typically leads to better results, but is slower at inference)"
)
with gr.Row():
mutation_range_start = gr.Number(label="Start of mutation window (first position indexed at 1)", value=1, precision=0)
mutation_range_end = gr.Number(label="End of mutation window (leave empty for full lenth)", value=10, precision=0)
with gr.TabItem("Parameters"):
with gr.Row():
model_size_selection = gr.Radio(label="Tranception model size (larger models are more accurate but are slower at inference)",
choices=["Small","Medium","Large"],
value="Small")
with gr.Row():
scoring_mirror = gr.Checkbox(label="Score protein from both directions (leads to more robust fitness predictions, but doubles inference time)")
with gr.Row():
batch_size_inference = gr.Number(label="Model batch size at inference time",value = 100, precision=0)
with gr.Row():
gr.Markdown("Note: the current version does not leverage retrieval of homologs at inference time to increase fitness prediction performance.")
with gr.Row():
clear_button = gr.Button(value="Clear",variant="secondary")
run_button = gr.Button(value="Predict fitness",variant="primary")
protein_ID = gr.Textbox(label="Uniprot ID", visible=False)
taxon = gr.Textbox(label="Taxon", visible=False)
examples = gr.Examples(
inputs=[protein_ID, taxon, protein_sequence_input],
outputs=[protein_sequence_input],
fn=extract_sequence,
examples=[
['ADRB2_HUMAN' ,'Human', 'MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL'],
['IF1_ECOLI' ,'Prokaryote', 'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'],
['P53_HUMAN' ,'Human', 'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'],
['BLAT_ECOLX' ,'Prokaryote', 'MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW'],
['BRCA1_HUMAN' ,'Human', 'MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFAKKENNSPEHLKDEVSIIQSMGYRNRAKRLLQSEPENPSLQETSLSVQLSNLGTVRTLRTKQRIQPQKTSVYIELGSDSSEDTVNKATYCSVGDQELLQITPQGTRDEISLDSAKKAACEFSETDVTNTEHHQPSNNDLNTTEKRAAERHPEKYQGSSVSNLHVEPCGTNTHASSLQHENSSLLLTKDRMNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTPSTEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITLNSSIQKVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSKSVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRPTSGLHPEDFIKKADLAVQKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEKNPNPIESLEKESAFKTKAEPISSSISNMELELNIHNSKAPKKNRLRRKSSTRHIHALELVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPATGAKKSNKPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKVSNNAEDPKDLMLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEPNKCVSQCAAFENPKGLIHGCSKDNRNDTEGFKYPLGHEVNHSRETSIEMEESELDAQYLQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVTFECEQKEENQGKNESNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHGLLQNPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNNIRENVFKEASSSNINEVGSSTNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGVLQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFSPYLISDNLEQPMGSSHASQVCSETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQGYRRGAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLSLKNSLNDCSNQVILAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGSSKQMRHQSESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNLGEAASGCESETSVSEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQPSNSYPSIISDSSALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVERSSPSKCPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSYLPRQDLEGTPYLESGISLFSDDPESDPSEDRAPESARVGNIPSSTSALKVPQLKVAESAQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRMSMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVVKELSSFTLGTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY'],
['CALM1_HUMAN' ,'Human', 'MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK'],
['CCDB_ECOLI' ,'Prokaryote', 'MQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI'],
['GFP_AEQVI' ,'Other eukaryote', 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'],
['GRB2_HUMAN' ,'Human', 'MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPWFFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV'],
['HSP82_YEAST' ,'Eukaryote ', 'MASETFEFQAEITQLMSLIINTVYSNKEIFLRELISNASDALDKIRYKSLSDPKQLETEPDLFIRITPKPEQKVLEIRDSGIGMTKAELINNLGTIAKSGTKAFMEALSAGADVSMIGQFGVGFYSLFLVADRVQVISKSNDDEQYIWESNAGGSFTVTLDEVNERIGRGTILRLFLKDDQLEYLEEKRIKEVIKRHSEFVAYPIQLVVTKEVEKEVPIPEEEKKDEEKKDEEKKDEDDKKPKLEEVDEEEEKKPKTKKVKEEVQEIEELNKTKPLWTRNPSDITQEEYNAFYKSISNDWEDPLYVKHFSVEGQLEFRAILFIPKRAPFDLFESKKKKNNIKLYVRRVFITDEAEDLIPEWLSFVKGVVDSEDLPLNLSREMLQQNKIMKVIRKNIVKKLIEAFNEIAEDSEQFEKFYSAFSKNIKLGVHEDTQNRAALAKLLRYNSTKSVDELTSLTDYVTRMPEHQKNIYYITGESLKAVEKSPFLDALKAKNFEVLFLTDPIDEYAFTQLKEFEGKTLVDITKDFELEETDEEKAEREKEIKEYEPLTKALKEILGDQVEKVVVSYKLLDAPAAIRTGQFGWSANMERIMKAQALRDSSMSSYMSSKKTFEISPKSPIIKELKKRVDEGGAQDKTVKDLTKLLYETALLTSGFSLDEPTSFASRINRLISLGLNIDEDEETETAPEASTAAPVEEVPADTEMEEVD'],
['IF1_ECOLI' ,'Prokaryote', 'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'],
['KCNH2_HUMAN' ,'Human', 'MPVRRGHVAPQNTFLDTIIRKFEGQSRKFIIANARVENCAVIYCNDGFCELCGYSRAEVMQRPCTCDFLHGPRTQRRAAAQIAQALLGAEERKVEIAFYRKDGSCFLCLVDVVPVKNEDGAVIMFILNFEVVMEKDMVGSPAHDTNHRGPPTSWLAPGRAKTFRLKLPALLALTARESSVRSGGAGGAGAPGAVVVDVDLTPAAPSSESLALDEVTAMDNHVAGLGPAEERRALVGPGSPPRSAPGQLPSPRAHSLNPDASGSSCSLARTRSRESCASVRRASSADDIEAMRAGVLPPPPRHASTGAMHPLRSGLLNSTSDSDLVRYRTISKIPQITLNFVDLKGDPFLASPTSDREIIAPKIKERTHNVTEKVTQVLSLGADVLPEYKLQAPRIHRWTILHYSPFKAVWDWLILLLVIYTAVFTPYSAAFLLKETEEGPPATECGYACQPLAVVDLIVDIMFIVDILINFRTTYVNANEEVVSHPGRIAVHYFKGWFLIDMVAAIPFDLLIFGSGSEELIGLLKTARLLRLVRVARKLDRYSEYGAAVLFLLMCTFALIAHWLACIWYAIGNMEQPHMDSRIGWLHNLGDQIGKPYNSSGLGGPSIKDKYVTALYFTFSSLTSVGFGNVSPNTNSEKIFSICVMLIGSLMYASIFGNVSAIIQRLYSGTARYHTQMLRVREFIRFHQIPNPLRQRLEEYFQHAWSYTNGIDMNAVLKGFPECLQADICLHLNRSLLQHCKPFRGATKGCLRALAMKFKTTHAPPGDTLVHAGDLLTALYFISRGSIEILRGDVVVAILGKNDIFGEPLNLYARPGKSNGDVRALTYCDLHKIHRDDLLEVLDMYPEFSDHFWSSLEITFNLRDTNMIPGSPGSTELEGGFSRQRKRKLSFRRRTDKDTEQPGEVSALGPGRAGAGPSSRGRPGGPWGESPSSGPSSPESSEDEGPGRSSSPLRLVPFSSPRPPGEPPGGEPLMEDCEKSSDTCNPLSGAFSGVSNIFSFWGDSRGRQYQELPRCPAPTPSLLNIPLSSPGRRPRGDVESRLDALQRQLNRLETRLSADMATVLQLLQRQMTLVPPAYSAVTTPGPGPTSTSPLLPVSPLPTLTLDSLSQVSQFMACEELPPGAPELPQEGPTRRLSLPGQLGALTSQPLHRHGSDPGS'],
['KKA2_KLEPN' ,'Prokaryote', 'MIEQDGLHAGSPAAWVERLFGYDWAQQTIGCSDAAVFRLSAQGRPVLFVKTDLSGALNELQDEAARLSWLATTGVPCAAVLDVVTEAGRDWLLLGEVPGQDLLSSHLAPAEKVSIMADAMRRLHTLDPATCPFDHQAKHRIERARTRMEAGLVDQDDLDEEHQGLAPAELFARLKARMPDGEDLVVTHGDACLPNIMVENGRFSGFIDCGRLGVADRYQDIALATRDIAEELGGEWADRFLVLYGIAAPDSQRIAFYRLLDEFF'],
['MSH2_HUMAN' ,'Human', 'MAVQPKETLQLESAAEVGFVRFFQGMPEKPTTTVRLFDRGDFYTAHGEDALLAAREVFKTQGVIKYMGPAGAKNLQSVVLSKMNFESFVKDLLLVRQYRVEVYKNRAGNKASKENDWYLAYKASPGNLSQFEDILFGNNDMSASIGVVGVKMSAVDGQRQVGVGYVDSIQRKLGLCEFPDNDQFSNLEALLIQIGPKECVLPGGETAGDMGKLRQIIQRGGILITERKKADFSTKDIYQDLNRLLKGKKGEQMNSAVLPEMENQVAVSSLSAVIKFLELLSDDSNFGQFELTTFDFSQYMKLDIAAVRALNLFQGSVEDTTGSQSLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEAFVEDAELRQTLQEDLLRRFPDLNRLAKKFQRQAANLQDCYRLYQGINQLPNVIQALEKHEGKHQKLLLAVFVTPLTDLRSDFSKFQEMIETTLDMDQVENHEFLVKPSFDPNLSELREIMNDLEKKMQSTLISAARDLGLDPGKQIKLDSSAQFGYYFRVTCKEEKVLRNNKNFSTVDIQKNGVKFTNSKLTSLNEEYTKNKTEYEEAQDAIVKEIVNISSGYVEPMQTLNDVLAQLDAVVSFAHVSNGAPVPYVRPAILEKGQGRIILKASRHACVEVQDEIAFIPNDVYFEKDKQMFHIITGPNMGGKSTYIRQTGVIVLMAQIGCFVPCESAEVSIVDCILARVGAGDSQLKGVSTFMAEMLETASILRSATKDSLIIIDELGRGTSTYDGFGLAWAISEYIATKIGAFCMFATHFHELTALANQIPTVNNLHVTALTTEETLTMLYQVKKGVCDQSFGIHVAELANFPKHVIECAKQKALELEEFQYIGESQGYDIMEPAAKKCYLEREQGEKIIQEFLSKVKQMPFTEMSEENITIKLKQLKAEVIAKNNSFVNEIISRIKVTT'],
['PABP_YEAST' ,'Other eukaryote', 'MADITDKTAEQLENLNIQDDQKQAATGSESQSVENSSASLYVGDLEPSVSEAHLYDIFSPIGSVSSIRVCRDAITKTSLGYAYVNFNDHEAGRKAIEQLNYTPIKGRLCRIMWSQRDPSLRKKGSGNIFIKNLHPDIDNKALYDTFSVFGDILSSKIATDENGKSKGFGFVHFEEEGAAKEAIDALNGMLLNGQEIYVAPHLSRKERDSQLEETKAHYTNLYVKNINSETTDEQFQELFAKFGPIVSASLEKDADGKLKGFGFVNYEKHEDAVKAVEALNDSELNGEKLYVGRAQKKNERMHVLKKQYEAYRLEKMAKYQGVNLFVKNLDDSVDDEKLEEEFAPYGTITSAKVMRTENGKSKGFGFVCFSTPEEATKAITEKNQQIVAGKPLYVAIAQRKDVRRSQLAQQIQARNQMRYQQATAAAAAAAAGMPGQFMPPMFYGVMPPRGVPFNGPNPQQMNPMGGMPKNGMPPQFRNGPVYGVPPQGGFPRNANDNNQFYQQKQRQALGEQLYKKVSAKTSNEEAAGKITGMILDLPPQEVFPLLESDELFEQHYKEASAAYESFKKEQEQQTEQA'],
['P53_HUMAN' ,'Human', 'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'],
['PTEN_HUMAN' ,'Human', 'MTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIYNLCAERHYDTAKFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKGRTGVMICAYLLHRGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKMMFETIPMFSGGTCNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEFPQPLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTLTKNDLDKANKDKANRYFSPNFKVKLYFTKTVEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPFDEDQHTQITKV'],
['RL40A_YEAST' ,'Eukaryote ', 'MQIFVKTLTGKTITLEVESSDTIDNVKSKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGIIEPSLKALASKYNCDKSVCRKCYARLPPRATNCRKRKCGHTNQLRPKKKLK'],
['SCN5A_HUMAN' ,'Human', 'MANFLLPRGTSSFRRFTRESLAAIEKRMAEKQARGSTTLQESREGLPEEEAPRPQLDLQASKKLPDLYGNPPQELIGEPLEDLDPFYSTQKTFIVLNKGKTIFRFSATNALYVLSPFHPIRRAAVKILVHSLFNMLIMCTILTNCVFMAQHDPPPWTKYVEYTFTAIYTFESLVKILARGFCLHAFTFLRDPWNWLDFSVIIMAYTTEFVDLGNVSALRTFRVLRALKTISVISGLKTIVGALIQSVKKLADVMVLTVFCLSVFALIGLQLFMGNLRHKCVRNFTALNGTNGSVEADGLVWESLDLYLSDPENYLLKNGTSDVLLCGNSSDAGTCPEGYRCLKAGENPDHGYTSFDSFAWAFLALFRLMTQDCWERLYQQTLRSAGKIYMIFFMLVIFLGSFYLVNLILAVVAMAYEEQNQATIAETEEKEKRFQEAMEMLKKEHEALTIRGVDTVSRSSLEMSPLAPVNSHERRSKRRKRMSSGTEECGEDRLPKSDSEDGPRAMNHLSLTRGLSRTSMKPRSSRGSIFTFRRRDLGSEADFADDENSTAGESESHHTSLLVPWPLRRTSAQGQPSPGTSAPGHALHGKKNSTVDCNGVVSLLGAGDPEATSPGSHLLRPVMLEHPPDTTTPSEEPGGPQMLTSQAPCVDGFEEPGARQRALSAVSVLTSALEELEESRHKCPPCWNRLAQRYLIWECCPLWMSIKQGVKLVVMDPFTDLTITMCIVLNTLFMALEHYNMTSEFEEMLQVGNLVFTGIFTAEMTFKIIALDPYYYFQQGWNIFDSIIVILSLMELGLSRMSNLSVLRSFRLLRVFKLAKSWPTLNTLIKIIGNSVGALGNLTLVLAIIVFIFAVVGMQLFGKNYSELRDSDSGLLPRWHMMDFFHAFLIIFRILCGEWIETMWDCMEVSGQSLCLLVFLLVMVIGNLVVLNLFLALLLSSFSADNLTAPDEDREMNNLQLALARIQRGLRFVKRTTWDFCCGLLRQRPQKPAALAAQGQLPSCIATPYSPPPPETEKVPPTRKETRFEEGEQPGQGTPGDPEPVCVPIAVAESDTDDQEEDEENSLGTEEESSKQQESQPVSGGPEAPPDSRTWSQVSATASSEAEASASQADWRQQWKAEPQAPGCGETPEDSCSEGSTADMTNTAELLEQIPDLGQDVKDPEDCFTEGCVRRCPCCAVDTTQAPGKVWWRLRKTCYHIVEHSWFETFIIFMILLSSGALAFEDIYLEERKTIKVLLEYADKMFTYVFVLEMLLKWVAYGFKKYFTNAWCWLDFLIVDVSLVSLVANTLGFAEMGPIKSLRTLRALRPLRALSRFEGMRVVVNALVGAIPSIMNVLLVCLIFWLIFSIMGVNLFAGKFGRCINQTEGDLPLNYTIVNNKSQCESLNLTGELYWTKVKVNFDNVGAGYLALLQVATFKGWMDIMYAAVDSRGYEEQPQWEYNLYMYIYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGGQDIFMTEEQKKYYNAMKKLGSKKPQKPIPRPLNKYQGFIFDIVTKQAFDVTIMFLICLNMVTMMVETDDQSPEKINILAKINLLFVAIFTGECIVKLAALRHYYFTNSWNIFDFVVVILSIVGTVLSDIIQKYFFSPTLFRVIRLARIGRILRLIRGAKGIRTLLFALMMSLPALFNIGLLLFLVMFIYSIFGMANFAYVKWEAGIDDMFNFQTFANSMLCLFQITTSAGWDGLLSPILNTGPPYCDPTLPNSNGSRGDCGSPAVGILFFTTYIIISFLIVVNMYIAIILENFSVATEESTEPLSEDDFDMFYEIWEKFDPEATQFIEYSVLSDFADALSEPLRIAKPNQISLINMDLPMVSGDRIHCMDILFAFTKRVLGESGEMDALKIQMEEKFMAANPSKISYEPITTTLRRKHEEVSAMVIQRAFRRHLLQRSLKHASFLFRQQAGSGLSEEDAPEREGLIAYVMSENFSRPLGPPSSSSISSTSFPPSYDSVTRATSDNLQVRGSDYSHSEDLADFPPSPDRDRESIV'],
['SUMO1_HUMAN' ,'Human', 'MSDQEAKPSTEDLGDKKEGEYIKLKVIGQDSSEIHFKVKMTTHLKKLKESYCQRQGVPMNSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQEQTGGHSTV']
],
)
gr.Markdown("<br>")
gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range")
gr.Markdown("Inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones")
output_image = gr.Gallery(label="Fitness predictions for all single amino acid substitutions in mutation range",type="filepath") #Using Gallery to break down large scoring matrices into smaller images
output_recommendations = gr.Textbox(label="Mutation recommendations")
clear_button.click(
inputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
outputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
fn=clear_inputs
)
run_button.click(
fn=score_and_create_matrix_all_singles,
inputs=[protein_sequence_input,mutation_range_start,mutation_range_end,model_size_selection,scoring_mirror,batch_size_inference],
outputs=[output_image,output_recommendations],
)
gr.Markdown("# Mutate the starting protein sequence")
with gr.Row():
mutation_triplet = gr.Textbox(lines=1,label="Selected mutation", placeholder = "Input the mutation triplet for the selected mutation (eg., M1A)")
mutate_button = gr.Button(value="Apply mutation to starting protein", variant="primary")
mutated_protein_sequence = gr.Textbox(lines=1,label="Mutated protein sequence")
mutate_button.click(
fn = get_mutated_protein,
inputs = [protein_sequence_input,mutation_triplet],
outputs = mutated_protein_sequence
)
gr.Markdown("<p>You may now use the output mutated sequence above as the starting sequence for another round of in silico directed evolution.</p>")
gr.Markdown("For more information about the Tranception model, please refer to our paper below:")
gr.Markdown("<p><b>Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval</b><br>Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks<sup>*</sup>, Yarin Gal<sup>*</sup><br><sup>* equal senior authorship</sup></p>")
gr.Markdown("Links: <a href='https://proceedings.mlr.press/v162/notin22a.html' target='_blank'>Paper</a> <a href='https://github.com/OATML-Markslab/Tranception' target='_blank'>Code</a> <a href='https://sites.google.com/view/proteingym/substitutions' target='_blank'>ProteinGym</a>")
tranception_design.launch(debug=True) |