Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# -*- coding: utf-8 -*- | |
""" Use torchMoji to score texts for emoji distribution. | |
The resulting emoji ids (0-63) correspond to the mapping | |
in emoji_overview.png file at the root of the torchMoji repo. | |
Returns the result as an array. | |
""" | |
from __future__ import print_function, division, unicode_literals | |
import time | |
import sys | |
from os.path import abspath, dirname | |
import json | |
import csv | |
import numpy as np | |
from torchmoji.sentence_tokenizer import SentenceTokenizer | |
from torchmoji.model_def import torchmoji_emojis | |
from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH | |
def top_elements(array, k): | |
ind = np.argpartition(array, -k)[-k:] | |
return ind[np.argsort(array[ind])][::-1] | |
maxlen = 30 | |
print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) | |
with open(VOCAB_PATH, 'r') as f: | |
vocabulary = json.load(f) | |
st = SentenceTokenizer(vocabulary, maxlen) | |
print('Loading model from {}.'.format(PRETRAINED_PATH)) | |
model = torchmoji_emojis(PRETRAINED_PATH) | |
def scoreText(text, scalp_amount=5): | |
global st, model | |
print('Running predictions.') | |
# text | |
tokenized, _, _ = st.tokenize_sentences([text]) | |
print(tokenized) | |
prob = model(tokenized) | |
for prob in [prob]: | |
# Find top emojis for each sentence. Emoji ids (0-63) | |
# correspond to the mapping in emoji_overview.png | |
# at the root of the torchMoji repo. | |
scores = [] | |
for i, t in enumerate([text]): | |
t_tokens = tokenized[i] | |
t_score = [t] | |
t_prob = prob[i] | |
ind_top = top_elements(t_prob, scalp_amount) | |
t_score.append(sum(t_prob[ind_top])) | |
t_score.extend(ind_top) | |
t_score.extend([t_prob[ind] for ind in ind_top]) | |
return t_score | |
return scores |