Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# -*- coding: utf-8 -*- | |
""" Use torchMoji to predict emojis from a single text input | |
""" | |
from __future__ import print_function, division, unicode_literals | |
import example_helper | |
import json | |
import csv | |
import argparse | |
import numpy as np | |
import emoji | |
from torchmoji.sentence_tokenizer import SentenceTokenizer | |
from torchmoji.model_def import torchmoji_emojis | |
from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH | |
# Emoji map in emoji_overview.png | |
EMOJIS = ":joy: :unamused: :weary: :sob: :heart_eyes: \ | |
:pensive: :ok_hand: :blush: :heart: :smirk: \ | |
:grin: :notes: :flushed: :100: :sleeping: \ | |
:relieved: :relaxed: :raised_hands: :two_hearts: :expressionless: \ | |
:sweat_smile: :pray: :confused: :kissing_heart: :heartbeat: \ | |
:neutral_face: :information_desk_person: :disappointed: :see_no_evil: :tired_face: \ | |
:v: :sunglasses: :rage: :thumbsup: :cry: \ | |
:sleepy: :yum: :triumph: :hand: :mask: \ | |
:clap: :eyes: :gun: :persevere: :smiling_imp: \ | |
:sweat: :broken_heart: :yellow_heart: :musical_note: :speak_no_evil: \ | |
:wink: :skull: :confounded: :smile: :stuck_out_tongue_winking_eye: \ | |
:angry: :no_good: :muscle: :facepunch: :purple_heart: \ | |
:sparkling_heart: :blue_heart: :grimacing: :sparkles:".split(' ') | |
def top_elements(array, k): | |
ind = np.argpartition(array, -k)[-k:] | |
return ind[np.argsort(array[ind])][::-1] | |
if __name__ == "__main__": | |
argparser = argparse.ArgumentParser() | |
argparser.add_argument('--text', type=str, required=True, help="Input text to emojize") | |
argparser.add_argument('--maxlen', type=int, default=30, help="Max length of input text") | |
args = argparser.parse_args() | |
# Tokenizing using dictionary | |
with open(VOCAB_PATH, 'r') as f: | |
vocabulary = json.load(f) | |
st = SentenceTokenizer(vocabulary, args.maxlen) | |
# Loading model | |
model = torchmoji_emojis(PRETRAINED_PATH) | |
# Running predictions | |
tokenized, _, _ = st.tokenize_sentences([args.text]) | |
# Get sentence probability | |
prob = model(tokenized)[0] | |
# Top emoji id | |
emoji_ids = top_elements(prob, 5) | |
# map to emojis | |
emojis = map(lambda x: EMOJIS[x], emoji_ids) | |
print(emoji.emojize("{} {}".format(args.text,' '.join(emojis)), use_aliases=True)) | |