File size: 8,496 Bytes
4dbfce8
 
944cd11
4dbfce8
 
 
 
944cd11
 
 
9fee5da
 
 
4dbfce8
 
 
3dded80
 
944cd11
3dded80
4dbfce8
772e550
944cd11
6ae34d2
9fee5da
4dbfce8
9fee5da
772e550
 
 
 
4dbfce8
9fee5da
772e550
 
 
 
 
 
 
 
9fee5da
772e550
 
9fee5da
1d415c1
9fee5da
772e550
 
944cd11
772e550
 
 
 
 
 
 
 
944cd11
772e550
 
 
 
 
944cd11
 
 
772e550
 
944cd11
772e550
 
 
 
 
 
 
 
944cd11
772e550
 
 
 
 
944cd11
 
 
772e550
 
 
 
 
 
 
 
 
944cd11
26fb66e
944cd11
 
4dbfce8
 
 
 
cd15d50
 
 
 
 
 
 
 
 
 
 
 
3dded80
cd15d50
 
1d415c1
944cd11
 
fee7f77
cd15d50
 
 
 
 
 
 
 
 
 
1d415c1
 
cd15d50
944cd11
 
cd15d50
 
 
 
 
4dbfce8
 
3dded80
 
 
 
 
 
 
 
 
 
 
 
 
 
cd15d50
4dbfce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd15d50
4dbfce8
 
c2fa3f4
4dbfce8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import transformers
from simpletransformers.classification import ClassificationModel, ClassificationArgs
import torch
import json

# load all models
deep_scc_model_args = ClassificationArgs(num_train_epochs=10,max_seq_length=300,use_multiprocessing=False)
deep_scc_model = ClassificationModel("roberta", "NTUYG/DeepSCC-RoBERTa", num_labels=19, args=deep_scc_model_args, use_cuda=False)

pragformer = transformers.AutoModel.from_pretrained("Pragformer/PragFormer", trust_remote_code=True)
pragformer_private = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_private", trust_remote_code=True)
pragformer_reduction = transformers.AutoModel.from_pretrained("Pragformer/PragFormer_reduction", trust_remote_code=True)


#Event Listeners
with_omp_str = 'Should contain a parallel work-sharing loop construct'
without_omp_str = 'Should not contain a parallel work-sharing loop construct'
name_file = ['bash', 'c', 'c#', 'c++','css', 'haskell', 'java', 'javascript', 'lua', 'objective-c', 'perl', 'php', 'python','r','ruby', 'scala', 'sql', 'swift', 'vb.net']


tokenizer = transformers.AutoTokenizer.from_pretrained('NTUYG/DeepSCC-RoBERTa')

with open('c_data.json', 'r') as f:
    data = json.load(f)

def fill_code(code_pth):
    pragma = data[code_pth]['pragma']
    code = data[code_pth]['code']
    return 'None' if len(pragma)==0 else pragma, code
    

def predict(code_txt):
    code = code_txt.lstrip().rstrip()
    tokenized = tokenizer.batch_encode_plus(
                [code],
                max_length = 150,
                pad_to_max_length = True,
                truncation = True
            )
    pred = pragformer(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))

    y_hat = torch.argmax(pred).item()
    return with_omp_str if y_hat==1 else without_omp_str, torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()


def is_private(code_txt):
    if predict(code_txt)[0] == without_omp_str:
        return gr.update(visible=False)

    code = code_txt.lstrip().rstrip()
    tokenized = tokenizer.batch_encode_plus(
                [code],
                max_length = 150,
                pad_to_max_length = True,
                truncation = True
            )
    pred = pragformer_private(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))

    y_hat = torch.argmax(pred).item()
    # if y_hat == 0:
    #     return gr.update(visible=False)
    # else:
    return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain private with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)


def is_reduction(code_txt):
    if predict(code_txt)[0] == without_omp_str:
        return gr.update(visible=False)

    code = code_txt.lstrip().rstrip()
    tokenized = tokenizer.batch_encode_plus(
                [code],
                max_length = 150,
                pad_to_max_length = True,
                truncation = True
            )
    pred = pragformer_reduction(torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask']))

    y_hat = torch.argmax(pred).item()
    # if y_hat == 0:
    #     return gr.update(visible=False)
    # else:
    return gr.update(value=f"Should {'not' if y_hat==0 else ''} contain reduction with confidence: {torch.nn.Softmax(dim=1)(pred).squeeze()[y_hat].item()}", visible=True)


def lang_predict(code_txt):
    res = {}
    code = code_txt.replace('\n',' ').replace('\r',' ')
    predictions, raw_outputs = deep_scc_model.predict([code])
    # preds = [name_file[predictions[i]] for i in range(5)]
    softmax_vals = torch.nn.Softmax(dim=1)(torch.tensor(raw_outputs))
    top5 = torch.topk(softmax_vals, 5)

    for lang_idx, conf in zip(top5.indices.flatten(), top5.values.flatten()):
        res[name_file[lang_idx.item()]] = conf.item()

    return '\n'.join([f" {'✅' if k=='c' else '❌'}   {k}:   {v}" for k,v in res.items()])

    

# Define GUI

with gr.Blocks() as pragformer_gui:

    gr.Markdown(
        """
        # PragFormer Pragma Classifiction
        
        """)

    #with gr.Row(equal_height=True):
    with gr.Column():
        gr.Markdown("## Input")
        with gr.Row():
            with gr.Column():
                drop = gr.Dropdown(list(data.keys()), label="Mix of parallel and not-parallel code snippets", value="Minyoung-Kim1110/OpenMP/Excercise/atomic/0")
                sample_btn = gr.Button("Sample")
            
            pragma =  gr.Textbox(label="Original parallelization classification (if any)")
        with gr.Row():
            code_in = gr.Textbox(lines=5, label="Write some C code and see if it should contain a parallel work-sharing loop construct")
            lang_pred = gr.Textbox(lines=5, label="DeepSCC programming language prediction")

        submit_btn = gr.Button("Submit")
    with gr.Column():
        gr.Markdown("## Results")

        with gr.Row():
            label_out = gr.Textbox(label="Label")
            confidence_out = gr.Textbox(label="Confidence")

        with gr.Row():
            private = gr.Textbox(label="Data-sharing attribute clause- private", visible=False)
            reduction = gr.Textbox(label="Data-sharing attribute clause- reduction", visible=False)

    code_in.change(fn=lang_predict, inputs=code_in, outputs=lang_pred)

    submit_btn.click(fn=predict, inputs=code_in, outputs=[label_out, confidence_out])
    submit_btn.click(fn=is_private, inputs=code_in, outputs=private)
    submit_btn.click(fn=is_reduction, inputs=code_in, outputs=reduction)
    sample_btn.click(fn=fill_code, inputs=drop, outputs=[pragma, code_in])

    gr.Markdown(
    """

    ## How it Works?

    To use the PragFormer tool, you will need to input a C language for-loop. You can either write your own code or use the samples
    provided in the dropdown menu, which have been gathered from GitHub. Once you submit the code, the PragFormer model will analyze
    it and predict whether the for-loop should be parallelized using OpenMP. If the PragFormer model determines that parallelization
    is necessary, two additional models will be used to determine if adding specific data-sharing attributes, such as ***private*** or ***reduction*** clauses, is needed.

    ***private***- Specifies that each thread should have its own instance of a variable. 

    ***reduction***- Specifies that one or more variables that are private to each thread are the subject of a reduction operation at 
    the end of the parallel region.


    ## Description
    
    In past years, the world has switched to many-core and multi-core shared memory architectures.
    As a result, there is a growing need to utilize these architectures by introducing shared memory parallelization schemes to software applications. 
    OpenMP is the most comprehensive API that implements such schemes, characterized by a readable interface. 
    Nevertheless, introducing OpenMP into code, especially legacy code, is challenging due to pervasive pitfalls in management of parallel shared memory. 
    To facilitate the performance of this task, many source-to-source (S2S) compilers have been created over the years, tasked with inserting OpenMP directives into
     code automatically. 
    In addition to having limited robustness to their input format, these compilers still do not achieve satisfactory coverage and precision in locating parallelizable
     code and generating appropriate directives.
    In this work, we propose leveraging recent advances in machine learning techniques, specifically in natural language processing (NLP), to replace S2S compilers altogether. 
    We create a database (corpus), OpenMP-OMP specifically for this goal.
    OpenMP-OMP contains over 28,000 code snippets, half of which contain OpenMP directives while the other half do not need parallelization at all with high probability. 
    We use the corpus to train systems to automatically classify code segments in need of parallelization, as well as suggest individual OpenMP clauses. 
    We train several transformer models, named PragFormer, for these tasks, and show that they outperform statistically-trained baselines and automatic S2S parallelization 
    compilers in both classifying the overall need for an OpenMP directive and the introduction of private and reduction clauses.

    ![](https://user-images.githubusercontent.com/104314626/165228036-d7fadd8d-768a-4e94-bd57-0a77e1330082.png)

    """)


pragformer_gui.launch()