Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from datasets import Dataset, DatasetDict | |
import pandas as pd | |
import numpy as np | |
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification,Trainer, TrainingArguments | |
model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect') | |
tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256) | |
def tokenize_function(examples): | |
return tokenizer(examples['text'], padding=True, truncation=True, | |
max_length=256) | |
def predict(text): | |
# Convert test dataframe to Hugging Face dataset | |
test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text'])) | |
# Apply the tokenization function to the train dataset | |
train_dataset1 = test_dataset.map(tokenize_function, batched=True,) | |
predictions, label_probs, _ = trainer.predict(train_dataset1) | |
y_pred = np.argmax(predictions, axis=1) | |
return y_pred | |
# Create Gradio interface | |
text_input = gr.Textbox(lines=7, label="Input Text", placeholder="Enter your text here...") | |
output_text = gr.Textbox(label="Predicted Sentiment") | |
test_args = TrainingArguments( | |
do_train=False, | |
do_predict=True, | |
per_device_eval_batch_size = 2 | |
) | |
trainer = Trainer( | |
model=model, | |
args=test_args, | |
) | |
iface = gr.Interface(fn=predict, inputs=text_input, outputs=output_text) | |
iface.launch(share=True) |