File size: 9,710 Bytes
e5113bc
bf1fafe
e5113bc
 
0d6d702
e5113bc
bf1fafe
 
 
 
 
a1ff824
1c07179
0d6d702
 
 
bf1fafe
 
 
 
 
 
 
 
 
 
 
0d6d702
 
 
 
 
bf1fafe
 
 
 
 
 
 
 
 
 
 
 
 
0d6d702
 
 
 
 
bf1fafe
 
 
7aec52d
 
 
 
bf1fafe
0d6d702
bf1fafe
7aec52d
bf1fafe
0d6d702
bf1fafe
7aec52d
 
 
 
 
 
 
 
 
 
 
0d6d702
7aec52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf1fafe
 
 
7aec52d
 
 
 
 
 
 
 
0d6d702
 
 
 
 
 
 
 
 
 
 
7aec52d
 
 
0d6d702
 
7aec52d
 
 
 
0d6d702
 
7aec52d
 
 
 
2c416c0
 
 
5e1b314
2c416c0
 
c1ca45e
 
 
 
 
 
2c416c0
39b2d31
 
 
2c416c0
c1ca45e
2c416c0
c1ca45e
 
 
 
 
 
 
735928e
39b2d31
 
 
 
 
 
 
c1ca45e
39b2d31
 
 
 
 
 
c1ca45e
39b2d31
c1ca45e
 
 
 
 
 
 
 
 
 
 
 
 
 
595cebf
39b2d31
 
 
 
 
 
 
 
c1ca45e
39b2d31
 
 
c1ca45e
39b2d31
 
 
 
c1ca45e
39b2d31
 
 
c1ca45e
39b2d31
 
 
 
 
 
 
2c416c0
 
e5113bc
2c416c0
 
 
 
c1ca45e
2c416c0
 
 
 
 
 
 
 
 
c1ca45e
e5113bc
2c416c0
 
 
c1ca45e
2c416c0
 
c1ca45e
2c416c0
 
c1ca45e
2c416c0
 
 
c1ca45e
 
e5113bc
 
 
 
fdad934
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import gradio as gr
from transformers import pipeline
import random
from datetime import datetime
import logging

# Initialize models with smaller, faster alternatives
sentiment_analyzer = pipeline(
    "sentiment-analysis",
    model="distilbert-base-uncased-finetuned-sst-2-english",
    device=-1  # Force CPU usage
)

# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

# Pre-defined prompts and affirmations for different sentiments
PROMPT_TEMPLATES = {
    "POSITIVE": [
        "- What made this positive experience particularly meaningful to you?",
        "- How can you carry this positive energy forward?",
        "- Who would you like to share this joy with and why?"
    ],
    "NEGATIVE": [
        "- What can you learn from this challenging situation?",
        "- What small step could you take to feel better?",
        "- Who or what helps you feel supported during difficult times?"
    ],
    "NEUTRAL": [
        "- What does this experience teach you about balance?",
        "- How does this experience fit into your overall life story?",
        "- What is something small you are grateful for today?"
    ]
}

AFFIRMATIONS = {
    "POSITIVE": [
        "I deserve this joy and all good things coming my way.",
        "My positive energy creates positive experiences.",
        "I choose to embrace and celebrate this moment."
    ],
    "NEGATIVE": [
        "This too shall pass, and I am growing stronger.",
        "I trust in my ability to handle challenging situations.",
        "Every experience is teaching me something valuable."
    ],
    "NEUTRAL": [
        "I appreciate the calmness of the present moment.",
        "I am in harmony with life’s natural flow.",
        "Balance is a gift I cultivate every day."
    ]
}

class JournalCompanion:
    def __init__(self):
        self.entries = []
    
    def get_prompts(self, sentiment):
        prompts = PROMPT_TEMPLATES.get(sentiment, PROMPT_TEMPLATES["NEUTRAL"])
        return "\n\nReflective Prompts:\n" + "\n".join(prompts)

    def get_affirmation(self, sentiment):
        affirmations = AFFIRMATIONS.get(sentiment, AFFIRMATIONS["NEUTRAL"])
        return random.choice(affirmations)

    def analyze_entry(self, entry_text):
        if not entry_text.strip():
            return ("Please write something in your journal entry.", "", "", "")

        try:
            # Perform sentiment analysis
            sentiment_result = sentiment_analyzer(entry_text)[0]
            sentiment = sentiment_result["label"].upper()
            sentiment_score = sentiment_result["score"]
        except Exception as e:
            logging.error("Error during sentiment analysis: %s", e)
            return (
                "An error occurred during analysis. Please try again.",
                "Error",
                "Could not analyze sentiment due to an error.",
                "Could not generate affirmation due to an error."
            )

        entry_data = {
            "text": entry_text,
            "timestamp": datetime.now().isoformat(),
            "sentiment": sentiment,
            "sentiment_score": sentiment_score
        }
        self.entries.append(entry_data)

        # Get pre-defined responses
        prompts = self.get_prompts(sentiment)
        affirmation = self.get_affirmation(sentiment)
        sentiment_percentage = f"{sentiment_score * 100:.1f}%"
        message = f"Entry analyzed! Sentiment: {sentiment} ({sentiment_percentage} confidence)"
        
        return message, sentiment, prompts, affirmation

    def get_monthly_insights(self):
        if not self.entries:
            return "No entries yet to analyze."

        current_month = datetime.now().month
        monthly_entries = [entry for entry in self.entries if datetime.fromisoformat(entry["timestamp"]).month == current_month]
        
        total_entries = len(monthly_entries)
        if total_entries == 0:
            return "No entries this month to analyze."

        positive_entries = sum(1 for entry in monthly_entries if entry["sentiment"] == "POSITIVE")
        neutral_entries = sum(1 for entry in monthly_entries if entry["sentiment"] == "NEUTRAL")
        negative_entries = total_entries - positive_entries - neutral_entries
        
        try:
            percentage_positive = (positive_entries / total_entries * 100)
            percentage_neutral = (neutral_entries / total_entries * 100)
            percentage_negative = (negative_entries / total_entries * 100)
            
            insights = f"""Monthly Insights:
            Total Entries: {total_entries}
            Positive Entries: {positive_entries} ({percentage_positive:.1f}%)
            Neutral Entries: {neutral_entries} ({percentage_neutral:.1f}%)
            Negative Entries: {negative_entries} ({percentage_negative:.1f}%)
            """
            return insights
        except ZeroDivisionError:
            return "No entries available for analysis."

def create_journal_interface():
    journal = JournalCompanion()
    
    # Custom CSS for better styling
    custom_css = """
        @import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');

        * {
            font-family: 'Roboto', sans-serif;
        }

        .container {
            max-width: 1200px;
            margin: 0 auto;
            padding: 20px;
        }

        .header {
            text-align: center;
            margin-bottom: 2rem;
            background: linear-gradient(135deg, #2196f3 0%, #26c6da 100%);
            padding: 2rem;
            border-radius: 15px;
            color: #ffffff;
        }

        .input-container {
            background: white;
            border-radius: 15px;
            padding: 20px;
            box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
            margin-bottom: 20px;
        }

        .output-container {
            background: #f8f9fa;
            border-radius: 15px;
            padding: 20px;
            margin-top: 20px;
        }

        .custom-button {
            background: linear-gradient(135deg, #009688 0%, #0072ff 100%);
            border: none;
            padding: 10px 20px;
            border-radius: 8px;
            color: white;
            font-weight: bold;
            cursor: pointer;
            transition: transform 0.2s, box-shadow 0.2s;
        }

        .custom-button:hover {
            transform: translateY(-2px);
            box-shadow: 0 4px 8px rgba(0, 114, 255, 0.4);
        }

        .card {
            background: white;
            border-radius: 10px;
            padding: 15px;
            margin: 10px 0;
            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
            transition: transform 0.2s;
        }

        .card:hover {
            transform: translateY(-2px);
        }

        @keyframes fadeIn {
            from { opacity: 0; transform: translateY(10px); }
            to { opacity: 1; transform: translateY(0); }
        }

        .result-animation {
            animation: fadeIn 0.5s ease-out;
        }

        @media (max-width: 768px) {
            .container {
                padding: 10px;
            }
            .header {
                padding: 1rem;
            }
        }
    """
    
    with gr.Blocks(css=custom_css, title="AI Journal Companion") as interface:
        with gr.Column(elem_classes="container"):
            with gr.Column(elem_classes="header"):
                gr.Markdown("# 📔 AI Journal Companion")
                gr.Markdown("Transform your thoughts into insights with AI-powered journaling", elem_classes="subtitle")
            
            with gr.Row():
                with gr.Column(scale=1, elem_classes="input-container"):
                    entry_input = gr.Textbox(
                        label="Write Your Thoughts",
                        placeholder="Share what's on your mind...",
                        lines=8,
                        elem_classes="journal-input"
                    )
                    submit_btn = gr.Button("✨ Analyze Entry", variant="primary", elem_classes="custom-button")
                
                with gr.Column(scale=1, elem_classes="output-container"):
                    with gr.Column(elem_classes="card result-animation"):
                        result_message = gr.Markdown(label="Analysis")
                        sentiment_output = gr.Textbox(label="Emotional Tone", elem_classes="sentiment-output")
                    
                    with gr.Column(elem_classes="card result-animation"):
                        prompt_output = gr.Markdown(label="Reflection Prompts", elem_classes="prompts-output")
                    
                    with gr.Column(elem_classes="card result-animation"):
                        affirmation_output = gr.Textbox(label="Your Daily Affirmation", elem_classes="affirmation-output")
            
            with gr.Row(elem_classes="insights-section"):
                with gr.Column(scale=1):
                    insights_btn = gr.Button("📊 View Monthly Insights", elem_classes="custom-button")
                    insights_output = gr.Markdown(elem_classes="card insights-card")

        submit_btn.click(
            fn=journal.analyze_entry,
            inputs=[entry_input],
            outputs=[result_message, sentiment_output, prompt_output, affirmation_output]
        )
        
        insights_btn.click(
            fn=journal.get_monthly_insights,
            inputs=[],
            outputs=[insights_output]
        )

    return interface

if __name__ == "__main__":
    interface = create_journal_interface()
    interface.launch()