Spaces:
Sleeping
Sleeping
File size: 28,761 Bytes
34d43ef bda45a0 34d43ef bda45a0 34d43ef bda45a0 34d43ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
import math
import torch
from ldm.models.diffusion.gaussian_smoothing import GaussianSmoothing
from torch.nn import functional as F
from torchvision.utils import save_image
def loss_one_att_outside(attn_map,bboxes, object_positions,t):
# loss = torch.tensor(0).to('cuda')
loss = 0
object_number = len(bboxes)
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# if t== 20: import pdb; pdb.set_trace()
for obj_idx in range(object_number):
for obj_box in bboxes[obj_idx]:
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1.
mask_out = 1. - mask
index = (mask == 1.).nonzero(as_tuple=False)
index_in_key = index[:,0]* H + index[:, 1]
att_box = torch.zeros_like(attn_map)
att_box[:,index_in_key,:] = attn_map[:,index_in_key,:]
att_box = att_box.sum(axis=1) / index_in_key.shape[0]
att_box = att_box.reshape(-1, H, H)
activation_value = (att_box* mask_out).reshape(b, -1).sum(dim=-1) #/ att_box.reshape(b, -1).sum(dim=-1)
loss += torch.mean(activation_value)
return loss / object_number
def caculate_loss_self_att(self_first, self_second, self_third, bboxes, object_positions, t, list_res=[256], smooth_att = True,sigma=0.5,kernel_size=3 ):
all_attn = get_all_self_att(self_first, self_second, self_third)
cnt = 0
total_loss = 0
for res in list_res:
attn_maps = all_attn[res]
for attn in attn_maps:
total_loss += loss_one_att_outside(attn, bboxes, object_positions,t)
cnt += 1
return total_loss /cnt
def get_all_self_att(self_first, self_second, self_third):
result = {256:[], 1024:[], 4096:[], 64:[], 94:[],1054:[] ,286:[],4126:[] }
# import pdb; pdb.set_trace()
all_att = [self_first, self_second, self_third]
for self_att in all_att:
for att in self_att:
if att != []:
temp = att[0]
for attn_map in temp:
current_res = attn_map.shape[1]
# print(current_res)
result[current_res].append(attn_map)
return result
def get_all_attention(attn_maps_mid, attn_maps_up , attn_maps_down, res):
result = []
# print('map from up *********************************************')
for attn_map_integrated in attn_maps_up:
if attn_map_integrated == []: continue
attn_map = attn_map_integrated[0][0]
# print(attn_map.shape)
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if H == res:
# print(attn_map.shape)
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
# print('map from mid *********************************************')
for attn_map_integrated in attn_maps_mid:
# for attn_map_integrated in attn_maps_mid:
attn_map = attn_map_integrated[0]
# print(attn_map.shape)
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if (H==res):
# print(attn_map.shape)
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
# import pdb; pdb.set_trace()
# print('map from down *********************************************')
for attn_map_integrated in attn_maps_down:
if attn_map_integrated == []: continue
attn_map = attn_map_integrated[0][0]
# print(attn_map.shape)
if attn_map == []: continue
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if (H==res):
# print(attn_map.shape)
result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
# for _map in result:
# print(_map.shape)
result = torch.cat(result, dim=0)
# print(result.shape)
result = result.sum(0) / result.shape[0]
# print(result.shape)
return result
def get_all_attention_64(attn_maps_mid, attn_maps_up , attn_maps_down, res):
result = []
# print('map from up *********************************************')
for attn_map_integrated in attn_maps_up:
if attn_map_integrated == []: continue
attn_map = attn_map_integrated[0][0]
# print(attn_map.shape)
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if H == res:
# print(attn_map.shape)
item = attn_map.reshape(-1, res, res, attn_map.shape[-1] )
item = item.permute(0, 3, 1, 2)
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
result.append(item)
# result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
# print('map from mid *********************************************')
for attn_map_integrated in attn_maps_mid:
# for attn_map_integrated in attn_maps_mid:
attn_map = attn_map_integrated[0]
# print(attn_map.shape)
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if (H==8):
item = attn_map.reshape(-1, 8, 8, attn_map.shape[-1] )
item = item.permute(0, 3, 1, 2)
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
result.append(item)
# result.append(attn_map.reshape(-1, res, res,attn_map.shape[-1] ))
# import pdb; pdb.set_trace()
# print('map from down *********************************************')
for attn_map_integrated in attn_maps_down:
if attn_map_integrated == []: continue
attn_map = attn_map_integrated[0][0]
# print(attn_map.shape)
if attn_map == []: continue
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
# print(H)
if (H==res):
item = attn_map.reshape(-1, res, res, attn_map.shape[-1] )
item = item.permute(0, 3, 1, 2)
item = F.interpolate(item, 64, mode='bilinear').permute(0, 2, 3, 1)
result.append(item)
# for _map in result:
# print(_map.shape)
result = torch.cat(result, dim=0)
# print(result.shape)
result = result.sum(0) / result.shape[0]
# print(result.shape)
return result
def caculate_loss_att_fixed_cnt(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
attn16 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, res)
# attn32 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 32)
# attn64 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 64)
# attn8 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 8)
all_attn = [attn16]
obj_number = len(bboxes)
total_loss = 0
# import pdb; pdb.set_trace()
for attn in all_attn[0:1]:
# print(attn.shape)
attn_text = attn[:, :, 1:-1]
attn_text *= 100
attn_text = torch.nn.functional.softmax(attn_text, dim=-1)
current_res = attn.shape[0]
H = W = current_res
# if t == 49: import pdb; pdb.set_trace()
# 对于每一个物体
for obj_idx in range(obj_number):
num_boxes= 0
# 对于该物体 对应的 每一个box 一般就一个
for obj_position in object_positions[obj_idx]:
true_obj_position = obj_position - 1
# 取出该物体该box对应的attention map
att_map_obj = attn_text[:,:, true_obj_position]
print(att_map_obj.shape)
if smooth_att:
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda()
input = F.pad(att_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
att_map_obj = smoothing(input).squeeze(0).squeeze(0)
print('after', att_map_obj.shape)
other_att_map_obj = att_map_obj.clone()
att_copy = att_map_obj.clone()
for obj_box in bboxes[obj_idx]:
# print('obj_box', type(obj_box))
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
# 取得这张map上 当前box的最大值
if att_map_obj[y_min: y_max, x_min: x_max].numel() == 0:
max_inside=1.
else:
max_inside = att_map_obj[y_min: y_max, x_min: x_max].max()
total_loss += 1. - max_inside
# find max outside the box, find in the other boxes
att_copy[y_min: y_max, x_min: x_max] = 0.
other_att_map_obj[y_min: y_max, x_min: x_max] = 0.
for obj_outside in range(obj_number):
if obj_outside != obj_idx:
for obj_out_box in bboxes[obj_outside]:
x_min_out, y_min_out, x_max_out, y_max_out = int(obj_out_box[0] * W), \
int(obj_out_box[1] * H), int(obj_out_box[2] * W), int(obj_out_box[3] * H)
# 取得这张map上 其他box中的最大值
if other_att_map_obj[y_min_out: y_max_out, x_min_out: x_max_out].numel() == 0:
max_outside_one= 0
else:
max_outside_one = other_att_map_obj[y_min_out: y_max_out, x_min_out: x_max_out].max()
# max_outside = max(max_outside,max_outside_one )
# 把所有box都置0
att_copy[y_min_out: y_max_out, x_min_out: x_max_out] = 0.
total_loss += max_outside_one
max_background = att_copy.max()
total_loss += len(bboxes[obj_idx]) *max_background /2.
return total_loss/obj_number
def caculate_loss_LoCo(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
attn16 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, res)
# attn32 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 32)
# attn64 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 64)
# attn8 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, 8)
all_attn = [attn16]
loss = 0.
pad_loss = 0.
total_fg_map = torch.zeros(size=(16, 16)).cuda()
# alpha是pad loss的权重
# beta是pad loss内部的权重 例如 beta是SOT的 1 - beta是EOT的
alpha = 0.2
beta = 0.8
object_number = len(bboxes)
if object_number == 0:
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
# attn16 = get_all_attention(attn_maps_down[-1], attn_maps_mid, attn_maps_up[0], 16)
# all_attn = [attn16]
max_loss = 0
for attn_map in all_attn:
# print(attn_map.shape)
# 原来是[8, 64, 77] 现在只取后一半 attn_map [4, 64, 77]
sum_in = 0.
sum_out = 0.
i, j, k = attn_map.shape
H = W = i # 在这里是8
for obj_idx in range(object_number): # 对于每个box
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1 # mask是一个全0矩阵 当前物体box的位置设为1
total_fg_map[y_min: y_max, x_min: x_max] = 1
# 选中obj在token中的位置(即token对应的map) reshape到[4, 16, 16]
for obj_position in [object_positions[obj_idx]]: # 注意,object_positions是一个list,形如[[6], [10]] 代表第一个物体在第6个token,第二个物体在第10个token
# 选中物体对应位置(例如[6])的map,然后reshape到[4, 16, 16]
# print(attn_map[:, :, obj_position].shape)
ca_map_obj = attn_map[:, :, obj_position].sum(-1)
# print(ca_map_obj.shape)
if smooth_att:
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda()
input = F.pad(ca_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
ca_map_obj = smoothing(input).squeeze(0).squeeze(0)
ca_map_obj = ca_map_obj.reshape(H, W)
norm_ca_map_obj = ca_map_obj / ca_map_obj.max()
# if smooth_attn:
# smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).cuda()
# input = F.pad(norm_ca_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
# ca_map_obj = smoothing(input).squeeze(0).squeeze(0)
norm_ca_map_obj = norm_ca_map_obj.reshape(H, W)
# avg_fg_value = torch.mean(ca_map_obj * mask)
# print('avg_fg_value', avg_fg_value)
sum_in += (norm_ca_map_obj * mask).sum()
sum_out += (norm_ca_map_obj * (1 - mask)).sum()
# obj_loss += torch.mean((1 - activation_value) ** 2)
# # SOTR loss
# ca_map_obj = (1 - attn_map[:, :, 0]).reshape(H, W)
# if (1 - attn_map[:, :, obj_position].max()) > max_loss:
# max_loss = (1 - attn_map[:, :, obj_position].max())
# ca_map_obj = (1 - attn_map[:, :, 0]).reshape(H, W)
# if smooth_attn:
# smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).cuda()
# input = F.pad(ca_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
# ca_map_obj = smoothing(input).squeeze(0).squeeze(0)
# # ca_map_obj *= 100
# # ca_map_obj = torch.nn.functional.softmax(ca_map_obj, dim=-1)
# activation_value = (ca_map_obj * mask).reshape(-1).sum(dim=-1) / ca_map_obj.reshape(-1).sum(dim=-1)
# obj_loss += torch.mean((1 - activation_value) ** 2)
# obj_loss 就是标量了 tensor(0.3547, device='cuda:0', grad_fn=<AddBackward0>)
# 在这里每个物体对应1个box,所以len是1
loss += (obj_loss/len(object_positions[obj_idx]))
# get pad_loss
sot_map = attn_map[:, :, 0].reshape(H, W)
eot_map = attn_map[:, :, -1].reshape(H, W)
norm_sot_map = (1 - sot_map) / (1 - sot_map).max()
norm_eot_map = eot_map / eot_map.max()
pad_map = beta * norm_sot_map + (1 - beta) * norm_eot_map
# pad_map = pad_map.to(torch.float64)
total_fg_mask = total_fg_map#.to(torch.float64)
fg_map = pad_map * total_fg_mask
# print(fg_map.shape)
# print(pad_map.shape)
# fg_map = torch.sigmoid(fg_map)
# mse_loss = F.mse_loss(pad_map.reshape(-1), fg_map.reshape(-1))
bce_loss = F.binary_cross_entropy(torch.sigmoid(pad_map.reshape(-1)), fg_map.reshape(-1))
# print('mse_loss', mse_loss)
# print('bce_loss', bce_loss)
#bce_loss = torch.clamp(bce_loss, max=0.99)
# pad_loss += mse_loss
pad_loss += bce_loss
#pad_loss += (1 - torch.mean((pad_map * total_fg_map).reshape(-1).sum(dim=-1) / pad_map.reshape(-1).sum(dim=-1)) ) **2
# print('该步优化结束')
loss += (1 - sum_in / (sum_in + sum_out)) ** 2
# loss += max_loss
# print('loss', loss)
# print('pad_loss', alpha * pad_loss)
return loss + alpha * pad_loss
def caculate_loss_LoCo_64(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
attn16 = get_all_attention_64(attn_maps_mid, attn_maps_up, attn_maps_down, res)
all_attn = [attn16]
loss = 0.
pad_loss = 0.
total_fg_map = torch.zeros(size=(64, 64)).cuda()
# alpha是pad loss的权重
# beta是pad loss内部的权重 例如 beta是SOT的 1 - beta是EOT的
alpha = 0.2
beta = 0.8
object_number = len(bboxes)
if object_number == 0:
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
# attn16 = get_all_attention(attn_maps_down[-1], attn_maps_mid, attn_maps_up[0], 16)
# all_attn = [attn16]
max_loss = 0
for attn_map in all_attn:
# print(attn_map.shape)
# 原来是[8, 64, 77] 现在只取后一半 attn_map [4, 64, 77]
sum_in = 0.
sum_out = 0.
i, j, k = attn_map.shape
H = W = i # 在这里是8
for obj_idx in range(object_number): # 对于每个box
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1 # mask是一个全0矩阵 当前物体box的位置设为1
total_fg_map[y_min: y_max, x_min: x_max] = 1
# 选中obj在token中的位置(即token对应的map) reshape到[4, 16, 16]
for obj_position in [object_positions[obj_idx]]: # 注意,object_positions是一个list,形如[[6], [10]] 代表第一个物体在第6个token,第二个物体在第10个token
# 选中物体对应位置(例如[6])的map,然后reshape到[4, 16, 16]
# print(attn_map[:, :, obj_position].shape)
ca_map_obj = attn_map[:, :, obj_position].sum(-1)
# print(ca_map_obj.shape)
if smooth_att:
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda()
input = F.pad(ca_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
ca_map_obj = smoothing(input).squeeze(0).squeeze(0)
ca_map_obj = ca_map_obj.reshape(H, W)
norm_ca_map_obj = ca_map_obj / ca_map_obj.max()
norm_ca_map_obj = norm_ca_map_obj.reshape(H, W)
sum_in += (norm_ca_map_obj * mask).sum()
sum_out += (norm_ca_map_obj * (1 - mask)).sum()
# 在这里每个物体对应1个box,所以len是1
loss += (obj_loss/len(object_positions[obj_idx]))
# get pad_loss
sot_map = attn_map[:, :, 0].reshape(H, W)
eot_map = attn_map[:, :, -1].reshape(H, W)
norm_sot_map = (1 - sot_map) / (1 - sot_map).max()
norm_eot_map = eot_map / eot_map.max()
pad_map = beta * norm_sot_map + (1 - beta) * norm_eot_map
# pad_map = pad_map.to(torch.float64)
total_fg_mask = total_fg_map#.to(torch.float64)
fg_map = pad_map * total_fg_mask
# print(fg_map.shape)
# print(pad_map.shape)
# fg_map = torch.sigmoid(fg_map)
# mse_loss = F.mse_loss(pad_map.reshape(-1), fg_map.reshape(-1))
bce_loss = F.binary_cross_entropy(torch.sigmoid(pad_map.reshape(-1)), fg_map.reshape(-1))
# print('mse_loss', mse_loss)
# print('bce_loss', bce_loss)
#bce_loss = torch.clamp(bce_loss, max=0.99)
# pad_loss += mse_loss
pad_loss += bce_loss
#pad_loss += (1 - torch.mean((pad_map * total_fg_map).reshape(-1).sum(dim=-1) / pad_map.reshape(-1).sum(dim=-1)) ) **2
# print('该步优化结束')
loss += (1 - sum_in / (sum_in + sum_out)) ** 2
# loss += max_loss
# print('loss', loss)
# print('pad_loss', alpha * pad_loss)
return loss + alpha * pad_loss
def caculate_loss_LoCo_V2(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
attn16 = get_all_attention_64(attn_maps_mid, attn_maps_up, attn_maps_down, res)
all_attn = [attn16]
loss = 0.
pad_loss = 0.
total_fg_map = torch.zeros(size=(64, 64)).cuda()
alpha = 0.2
beta = 0.8
object_number = len(bboxes)
if object_number == 0:
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
# attn16 = attn_maps # get_all_attention_64(attn_maps_down[-1]+ attn_maps_down[-2], attn_maps_mid, attn_maps_up[0]+attn_maps_up[1], 16)
# all_attn = [attn16]
max_loss = 0
for attn_map in all_attn:
sum_in = 0.
sum_out = 0.
i, j, k = attn_map.shape
H = W = i
for obj_idx in range(object_number):
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1
total_fg_map[y_min: y_max, x_min: x_max] = 1
for obj_position in [object_positions[obj_idx]]:
# print('obj_position', obj_position)
if len(object_positions[obj_idx]) > 1 :
ca_map_obj = attn_map[:, :, obj_position].mean(-1)
else:
ca_map_obj = attn_map[:, :, obj_position]
ca_map_obj = ca_map_obj.reshape(H, W)
# norm_attn = (ca_map_obj - ca_map_obj.min()) / (ca_map_obj.max() - ca_map_obj.min())
norm_attn = ca_map_obj / ca_map_obj.max()
norm_attn = norm_attn.reshape(H, W)
# rev_mask = (1 - mask)
# thres = (norm_attn * mask).sum() / mask.sum() / 5 * 2 + ((norm_attn * rev_mask).sum() / rev_mask.sum() / 5 * 3) if rev_mask.sum() != 0 else 0
# thres_image = torch.nn.functional.threshold(norm_attn, thres.item(), 0.0)
# thres_image = thres_image / thres_image.max()
# rows, cols = torch.where(thres_image > 0.3)
# if rows.numel() == 0:
# x1 = y1 = x2 = y2 = 0
# else:
# x1, y1 = cols.min(), rows.min()
# x2, y2 = cols.max(), rows.max()
# # x1, y1 = cols.min(), rows.min()
# # x2, y2 = cols.max(), rows.max()
# mask_MBR = mask.clone()
# mask_MBR[y1:y2, x1:x2] = 1
# iou = (mask_MBR * mask).sum() / torch.max(mask_MBR, mask).sum()
iou = 0
if iou < 0.85:
sum_in = (1 - iou) * (norm_attn * mask).sum()
sum_out = (1 - iou) * (norm_attn * (1 - mask)).sum()
obj_loss += (1 - sum_in / (sum_in + sum_out)) ** 2
loss += (obj_loss) # /len(object_positions[obj_idx])
sot_map = attn_map[:, :, 0].reshape(H, W)
eot_map = attn_map[:, :, -1].reshape(H, W)
norm_sot_map = (1 - sot_map) / (1 - sot_map).max()
norm_eot_map = eot_map / eot_map.max()
pad_map = beta * norm_sot_map + (1 - beta) * norm_eot_map
total_fg_mask = total_fg_map
fg_map = pad_map * total_fg_mask
bce_loss = F.binary_cross_entropy(torch.sigmoid(pad_map.to(torch.float16).reshape(-1)), fg_map.to(torch.float16).reshape(-1))
pad_loss += bce_loss
if sum_in + sum_out == 0:
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
# loss += (1 - sum_in / (sum_in + sum_out)) ** 2
# print('loss', loss)
# return loss
return loss + alpha * pad_loss
def caculate_loss_LAC(attn_maps_mid, attn_maps_up, attn_maps_down, bboxes, object_positions, t, res=16, smooth_att = True,sigma=0.5,kernel_size=3 ):
attn16 = get_all_attention(attn_maps_mid, attn_maps_up, attn_maps_down, res)
all_attn = [attn16]
loss = 0.
pad_loss = 0.
total_fg_map = torch.zeros(size=(16, 16)).cuda()
# alpha是pad loss的权重
# beta是pad loss内部的权重 例如 beta是SOT的 1 - beta是EOT的
alpha = 0.2
beta = 0.8
object_number = len(bboxes)
if object_number == 0:
return torch.tensor(0).float().cuda() if torch.cuda.is_available() else torch.tensor(0).float()
# attn16 = get_all_attention(attn_maps_down[-1], attn_maps_mid, attn_maps_up[0], 16)
# all_attn = [attn16]
max_loss = 0
for attn_map in all_attn:
# print(attn_map.shape)
# 原来是[8, 64, 77] 现在只取后一半 attn_map [4, 64, 77]
sum_in = 0.
sum_out = 0.
i, j, k = attn_map.shape
H = W = i # 在这里是8
for obj_idx in range(object_number): # 对于每个box
obj_loss = 0
mask = torch.zeros(size=(H, W)).cuda() if torch.cuda.is_available() else torch.zeros(size=(H, W))
for obj_box in bboxes[obj_idx]:
x_min, y_min, x_max, y_max = int(obj_box[0] * W), \
int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
mask[y_min: y_max, x_min: x_max] = 1 # mask是一个全0矩阵 当前物体box的位置设为1
total_fg_map[y_min: y_max, x_min: x_max] = 1
# 选中obj在token中的位置(即token对应的map) reshape到[4, 16, 16]
for obj_position in [object_positions[obj_idx]]: # 注意,object_positions是一个list,形如[[6], [10]] 代表第一个物体在第6个token,第二个物体在第10个token
# 选中物体对应位置(例如[6])的map,然后reshape到[4, 16, 16]
# print(attn_map[:, :, obj_position].shape)
ca_map_obj = attn_map[:, :, obj_position].sum(-1)
print(ca_map_obj.shape)
if smooth_att:
smoothing = GaussianSmoothing(channels=1, kernel_size=kernel_size, sigma=sigma, dim=2).cuda()
input = F.pad(ca_map_obj.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode='reflect')
ca_map_obj = smoothing(input).squeeze(0).squeeze(0)
ca_map_obj = ca_map_obj.reshape(H, W)
norm_ca_map_obj = ca_map_obj / ca_map_obj.max()
norm_ca_map_obj = norm_ca_map_obj.reshape(H, W)
# avg_fg_value = torch.mean(ca_map_obj * mask)
# print('avg_fg_value', avg_fg_value)
sum_in = (norm_ca_map_obj * mask).sum()
sum_out = (norm_ca_map_obj * (1 - mask)).sum()
obj_loss += (1 - sum_in / (sum_in + sum_out)) ** 2
# 在这里每个物体对应1个box,所以len是1
loss += obj_loss
# get pad_loss
#sot_map = attn_map[:, :, 0].reshape(H, W)
#eot_map = attn_map[:, :, -1].reshape(H, W)
#norm_sot_map = (1 - sot_map) / (1 - sot_map).max()
#norm_eot_map = eot_map / eot_map.max()
#pad_map = beta * norm_sot_map + (1 - beta) * norm_eot_map
# pad_map = pad_map.to(torch.float64)
#total_fg_mask = total_fg_map#.to(torch.float64)
#fg_map = pad_map * total_fg_mask
# print(fg_map.shape)
# print(pad_map.shape)
# fg_map = torch.sigmoid(fg_map)
# mse_loss = F.mse_loss(pad_map.reshape(-1), fg_map.reshape(-1))
#bce_loss = F.binary_cross_entropy(torch.sigmoid(pad_map.reshape(-1)), fg_map.reshape(-1))
# print('mse_loss', mse_loss)
# print('bce_loss', bce_loss)
#bce_loss = torch.clamp(bce_loss, max=0.99)
# pad_loss += mse_loss
#pad_loss += bce_loss
#pad_loss += (1 - torch.mean((pad_map * total_fg_map).reshape(-1).sum(dim=-1) / pad_map.reshape(-1).sum(dim=-1)) ) **2
# print('该步优化结束')
# loss += (1 - sum_in / (sum_in + sum_out)) ** 2
# loss += max_loss
# print('loss', loss)
# print('pad_loss', alpha * pad_loss)
return loss + alpha * pad_loss
|