File size: 18,201 Bytes
34d43ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import torch
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.util import instantiate_from_config
import numpy as np
import random
import time 
from dataset.concat_dataset import ConCatDataset #, collate_fn
from torch.utils.data.distributed import  DistributedSampler
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import os 
import shutil
import torchvision
import math
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
from distributed import get_rank, synchronize, get_world_size
from transformers import get_cosine_schedule_with_warmup, get_constant_schedule_with_warmup
from copy import deepcopy
try:
    from apex import amp 
except:
    pass 
# = = = = = = = = = = = = = = = = = = useful functions = = = = = = = = = = = = = = = = = #

class ImageCaptionSaver:
    def __init__(self, base_path, nrow=8, normalize=True, scale_each=True, range=(-1,1) ):
        self.base_path = base_path 
        self.nrow = nrow
        self.normalize = normalize
        self.scale_each = scale_each
        self.range = range

    def __call__(self, images, real, captions, seen):
        
        save_path = os.path.join(self.base_path, str(seen).zfill(8)+'.png')
        torchvision.utils.save_image( images, save_path, nrow=self.nrow, normalize=self.normalize, scale_each=self.scale_each, range=self.range )
        
        save_path = os.path.join(self.base_path, str(seen).zfill(8)+'_real.png')
        torchvision.utils.save_image( real, save_path, nrow=self.nrow)

        assert images.shape[0] == len(captions)

        save_path = os.path.join(self.base_path, 'captions.txt')
        with open(save_path, "a") as f:
            f.write( str(seen).zfill(8) + ':\n' )    
            for cap in captions:
                f.write( cap + '\n' )  
            f.write( '\n' ) 



def read_official_ckpt(ckpt_path):      
    "Read offical pretrained ckpt and convert into my style" 
    state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
    out = {}
    out["model"] = {}
    out["text_encoder"] = {}
    out["autoencoder"] = {}
    out["unexpected"] = {}
    out["diffusion"] = {}

    for k,v in state_dict.items():
        if k.startswith('model.diffusion_model'):
            out["model"][k.replace("model.diffusion_model.", "")] = v 
        elif k.startswith('cond_stage_model'):
            out["text_encoder"][k.replace("cond_stage_model.", "")] = v 
        elif k.startswith('first_stage_model'):
            out["autoencoder"][k.replace("first_stage_model.", "")] = v 
        elif k in ["model_ema.decay", "model_ema.num_updates"]:
            out["unexpected"][k] = v  
        else:
            out["diffusion"][k] = v     
    return out 


def batch_to_device(batch, device):
    for k in batch:
        if isinstance(batch[k], torch.Tensor):
            batch[k] = batch[k].to(device)
    return batch


def sub_batch(batch, num=1):
    # choose first num in given batch 
    num = num if num > 1 else 1 
    for k in batch:
        batch[k] = batch[k][0:num]
    return batch


def wrap_loader(loader):
    while True:
        for batch in loader:  # TODO: it seems each time you have the same order for all epoch?? 
            yield batch


def disable_grads(model):
    for p in model.parameters():
        p.requires_grad = False


def count_params(params):
    total_trainable_params_count = 0 
    for p in params:
        total_trainable_params_count += p.numel()
    print("total_trainable_params_count is: ", total_trainable_params_count)


def update_ema(target_params, source_params, rate=0.99):
    for targ, src in zip(target_params, source_params):
        targ.detach().mul_(rate).add_(src, alpha=1 - rate)

           
def create_expt_folder_with_auto_resuming(OUTPUT_ROOT, name):
    #curr_folder_name = os.getcwd().split("/")[-1]
    name = os.path.join( OUTPUT_ROOT, name )
    writer = None
    checkpoint = None

    if os.path.exists(name):
        all_tags = os.listdir(name)
        all_existing_tags = [ tag for tag in all_tags if tag.startswith('tag')    ]
        all_existing_tags.sort()
        all_existing_tags = all_existing_tags[::-1]
        for previous_tag in all_existing_tags:
            potential_ckpt = os.path.join( name, previous_tag, 'checkpoint_latest.pth' )
            if os.path.exists(potential_ckpt):
                checkpoint = potential_ckpt
                if get_rank() == 0:
                    print('ckpt found '+ potential_ckpt)
                break 
        curr_tag = 'tag'+str(len(all_existing_tags)).zfill(2)
        name = os.path.join( name, curr_tag ) # output/name/tagxx
    else:
        name = os.path.join( name, 'tag00' ) # output/name/tag00

    if get_rank() == 0:
        os.makedirs(name) 
        os.makedirs(  os.path.join(name,'Log')  ) 
        writer = SummaryWriter( os.path.join(name,'Log')  )

    return name, writer, checkpoint



# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # 
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # 
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # 






class Trainer:
    def __init__(self, config):

        self.config = config
        self.device = torch.device("cuda")

        self.l_simple_weight = 1
        self.name, self.writer, checkpoint = create_expt_folder_with_auto_resuming(config.OUTPUT_ROOT, config.name)
        if get_rank() == 0:
            shutil.copyfile(config.yaml_file, os.path.join(self.name, "train_config_file.yaml")  )
            torch.save(  vars(config),  os.path.join(self.name, "config_dict.pth")     )

        # = = = = = = = = = = create model and diffusion = = = = = = = = = = #
        self.model = instantiate_from_config(config.model).to(self.device)
        self.autoencoder = instantiate_from_config(config.autoencoder).to(self.device)
        self.text_encoder = instantiate_from_config(config.text_encoder).to(self.device)
        self.diffusion = instantiate_from_config(config.diffusion).to(self.device)


        state_dict = read_official_ckpt(  os.path.join(config.DATA_ROOT, config.official_ckpt_name)   )
        missing_keys, unexpected_keys = self.model.load_state_dict( state_dict["model"], strict=False  )
        assert unexpected_keys == []
        original_params_names = list( state_dict["model"].keys()  )
        self.autoencoder.load_state_dict( state_dict["autoencoder"]  )
        self.text_encoder.load_state_dict( state_dict["text_encoder"]  )
        self.diffusion.load_state_dict( state_dict["diffusion"]  )
 
        self.autoencoder.eval()
        self.text_encoder.eval()
        disable_grads(self.autoencoder)
        disable_grads(self.text_encoder)



        # = = load from ckpt: (usually second stage whole model finetune) = = #
        if self.config.ckpt is not None:
            first_stage_ckpt = torch.load(self.config.ckpt, map_location="cpu")
            self.model.load_state_dict(first_stage_ckpt["model"])




        # = = = = = = = = = = create opt = = = = = = = = = = #
        print("  ")
        print("IMPORTANT: following code decides which params trainable!")
        print("  ")

        if self.config.whole:
            print("Entire model is trainable")
            params = list(self.model.parameters())
        else:
            print("Only new added components will be updated")
            params = []
            trainable_names = []
            for name, p in self.model.named_parameters():
                if ("transformer_blocks" in name) and ("fuser" in name):
                    params.append(p) 
                    trainable_names.append(name)
                elif  "position_net" in name:
                    params.append(p) 
                    trainable_names.append(name)
                else:
                    # all new added trainable params have to be haddled above
                    # otherwise it will trigger the following error  
                    assert name in original_params_names, name  
            
            all_params_name = list( self.model.state_dict().keys()  )
            assert set(all_params_name) == set(trainable_names + original_params_names) 

        self.opt = torch.optim.AdamW(params, lr=config.base_learning_rate, weight_decay=config.weight_decay) 
        count_params(params)
        
        self.master_params = list(self.model.parameters()) # note: you cannot assign above params as master_params since that is only trainable one
        
        if config.enable_ema:
            self.ema = deepcopy(self.model)
            self.ema_params = list(self.ema.parameters())
            self.ema.eval()

        # = = = = = = = = = = create scheduler = = = = = = = = = = #
        if config.scheduler_type == "cosine":
            self.scheduler = get_cosine_schedule_with_warmup(self.opt, num_warmup_steps=config.warmup_steps, num_training_steps=config.total_iters)
        elif config.scheduler_type == "constant":
            self.scheduler = get_constant_schedule_with_warmup(self.opt, num_warmup_steps=config.warmup_steps)
        else:
            assert False 



        # = = = = = = = = = = create data = = = = = = = = = = #  
        train_dataset_repeats = config.train_dataset_repeats if 'train_dataset_repeats' in config else None
        dataset_train = ConCatDataset(config.train_dataset_names, config.DATA_ROOT, config.which_embedder, train=True, repeats=train_dataset_repeats)
        sampler = DistributedSampler(dataset_train) if config.distributed else None 
        loader_train = DataLoader( dataset_train,  batch_size=config.batch_size, 
                                                   shuffle=(sampler is None),
                                                   num_workers=config.workers, 
                                                   pin_memory=True, 
                                                   sampler=sampler)
        self.dataset_train = dataset_train
        self.loader_train = wrap_loader(loader_train)

        if get_rank() == 0:
            total_image = dataset_train.total_images()
            print("Total training images: ", total_image)     
        

        # = = = = = = = = = = load from autoresuming ckpt = = = = = = = = = = #
        self.starting_iter = 0  
        if checkpoint is not None:
            checkpoint = torch.load(checkpoint, map_location="cpu")
            self.model.load_state_dict(checkpoint["model"])
            if config.enable_ema:
                self.ema.load_state_dict(checkpoint["ema"])
            self.opt.load_state_dict(checkpoint["opt"])
            self.scheduler.load_state_dict(checkpoint["scheduler"])
            self.starting_iter = checkpoint["iters"]
            if self.starting_iter >= config.total_iters:
                synchronize()
                print("Training finished. Start exiting")
                exit()


        # = = = = = misc = = = = = #    
        if get_rank() == 0:
            print("Actual total need see images is: ", config.total_iters*config.total_batch_size)
            print("Equivalent training epoch is: ", (config.total_iters*config.total_batch_size) / len(dataset_train) )         
            self.image_caption_saver = ImageCaptionSaver(self.name)
            # self.counter = Counter(config.total_batch_size, config.save_every_images)

        if config.use_o2:
            self.model, self.opt = amp.initialize(self.model, self.opt, opt_level="O2")
            self.model.use_o2 = True


        # = = = = = wrap into ddp = = = = = #
        if config.distributed:
            self.model = DDP( self.model, device_ids=[config.local_rank], output_device=config.local_rank, broadcast_buffers=False )





    @torch.no_grad()
    def get_input(self, batch):

        z = self.autoencoder.encode( batch["image"] )

        context = self.text_encoder.encode( batch["caption"]  )

        _t = torch.rand(z.shape[0]).to(z.device)
        t = (torch.pow(_t, self.config.resample_step_gamma) * 1000).long()
        t = torch.where(t!=1000, t, 999) # if 1000, then replace it with 999
        
        return z, t, context 


    def run_one_step(self, batch):
        x_start, t, context = self.get_input(batch)
        noise = torch.randn_like(x_start)
        x_noisy = self.diffusion.q_sample(x_start=x_start, t=t, noise=noise)

        input = dict(x = x_noisy, 
                     timesteps = t, 
                     context = context, 
                     boxes = batch['boxes'],
                     masks = batch['masks'], 
                     text_masks = batch['text_masks'],
                     image_masks = batch['image_masks'], 
                     text_embeddings = batch["text_embeddings"], 
                     image_embeddings = batch["image_embeddings"]  )
        model_output = self.model(input)
        
        loss = torch.nn.functional.mse_loss(model_output, noise) * self.l_simple_weight

        self.loss_dict = {"loss": loss.item()}

        return loss 
        


    def start_training(self):

        if not self.config.use_o2:
            # use pytorch mixed training which is similar to o1 but faster
            scaler = torch.cuda.amp.GradScaler()


        iterator = tqdm(range(self.starting_iter, self.config.total_iters), desc='Training progress',  disable=get_rank() != 0 )
        self.model.train()
        for iter_idx in iterator: # note: iter_idx is not from 0 if resume training
            self.iter_idx = iter_idx

            self.opt.zero_grad()
            batch = next(self.loader_train)
            batch_to_device(batch, self.device)

            if self.config.use_o2:
                loss = self.run_one_step(batch)
                with amp.scale_loss(loss, self.opt) as scaled_loss:
                    scaled_loss.backward()
                self.opt.step()
            else:
                enabled = True if self.config.use_mixed else False
                with torch.cuda.amp.autocast(enabled=enabled):  # with torch.autocast(enabled=True):
                    loss = self.run_one_step(batch)
                scaler.scale(loss).backward() 
                scaler.step(self.opt)
                scaler.update()


            self.scheduler.step()

            if self.config.enable_ema:
                update_ema(self.ema_params, self.master_params, self.config.ema_rate)


            if (get_rank() == 0):
                if (iter_idx % 10 == 0):
                    self.log_loss() 
                if (iter_idx == 0)  or  ( iter_idx % self.config.save_every_iters == 0 )  or  (iter_idx == self.config.total_iters-1):
                    self.save_ckpt_and_result()
            synchronize()

        
        synchronize()
        print("Training finished. Start exiting")
        exit()


    def log_loss(self):
        for k, v in self.loss_dict.items():
            self.writer.add_scalar(  k, v, self.iter_idx+1  )  # we add 1 as the actual name
    

    @torch.no_grad()
    def save_ckpt_and_result(self):

        model_wo_wrapper = self.model.module if self.config.distributed else self.model

        iter_name = self.iter_idx + 1     # we add 1 as the actual name

        if not self.config.disable_inference_in_training:
            # Do a quick inference on one training batch 
            batch_here = self.config.batch_size
            batch = sub_batch( next(self.loader_train), batch_here)
            batch_to_device(batch, self.device)

            
            real_images_with_box_drawing = [] # we save this durining trianing for better visualization
            for i in range(batch_here):
                temp_data = {"image": batch["image"][i], "boxes":batch["boxes"][i]}
                im = self.dataset_train.datasets[0].vis_getitem_data(out=temp_data, return_tensor=True, print_caption=False)
                real_images_with_box_drawing.append(im)
            real_images_with_box_drawing = torch.stack(real_images_with_box_drawing)

            
            uc = self.text_encoder.encode( batch_here*[""] )
            context = self.text_encoder.encode(  batch["caption"]  )
            
            ddim_sampler = PLMSSampler(self.diffusion, model_wo_wrapper)      
            shape = (batch_here, model_wo_wrapper.in_channels, model_wo_wrapper.image_size, model_wo_wrapper.image_size)
            input = dict( x = None, 
                          timesteps = None, 
                          context = context, 
                          boxes = batch['boxes'], 
                          masks = batch['masks'],
                          text_masks = batch['text_masks'], 
                          image_masks = batch['image_masks'], 
                          text_embeddings = batch["text_embeddings"], 
                          image_embeddings = batch["image_embeddings"] )
            samples = ddim_sampler.sample(S=50, shape=shape, input=input, uc=uc, guidance_scale=5)
            
            # old 
            # autoencoder_wo_wrapper = self.autoencoder # Note itself is without wrapper since we do not train that. 
            # autoencoder_wo_wrapper = autoencoder_wo_wrapper.cpu() # To save GPU 
            # samples = autoencoder_wo_wrapper.decode(samples.cpu())
            # autoencoder_wo_wrapper = autoencoder_wo_wrapper.to(self.device)

            # new 
            autoencoder_wo_wrapper = self.autoencoder # Note itself is without wrapper since we do not train that. 
            samples = autoencoder_wo_wrapper.decode(samples).cpu()

            self.image_caption_saver(samples, real_images_with_box_drawing,  batch["caption"], iter_name)

        ckpt = dict(model = model_wo_wrapper.state_dict(),
                    opt = self.opt.state_dict(),
                    scheduler= self.scheduler.state_dict(),
                    iters = self.iter_idx+1 )
        if self.config.enable_ema:
            ckpt["ema"] = self.ema.state_dict()
        torch.save( ckpt, os.path.join(self.name, "checkpoint_"+str(iter_name).zfill(8)+".pth") )
        torch.save( ckpt, os.path.join(self.name, "checkpoint_latest.pth") )