Jainam Jain
Updated Module
d372282
import cv2
import numpy as np
import imutils
import streamlit as st
import base64
def detect_face(input_img):
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
gray_image = cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5)
if len(faces) == 1:
return faces[0]
else:
return None
def thug_life(input_img,angle,x,y):
face_coords = detect_face(input_img)
if face_coords is None:
return input_img
sunglass_img = cv2.imread('media/glasses.png', cv2.IMREAD_UNCHANGED)
sunglass_img = imutils.rotate(sunglass_img, angle=angle)
face_width, face_height = face_coords[2], face_coords[3]
sunglass_img_resized = cv2.resize(sunglass_img, (face_width, face_height))
# Check if the image has an alpha channel
if sunglass_img_resized.shape[2] == 4:
alpha_channel_resized = cv2.resize(sunglass_img_resized[:, :, 3], (face_width, face_height))
else:
# If no alpha channel, create a default one
alpha_channel_resized = np.ones((face_height, face_width), dtype=np.uint8) * 255
thug_glass = alpha_channel_resized / 255.0
thug_glass = np.stack([thug_glass] * 3, axis=-1)
offset_y = int(face_height * y) # Adjust the offset based on your preference
start_y = max(0, face_coords[1] - offset_y)
offset_x = int(face_width * x) # Adjust the offset based on your preference
start_x = max(0, face_coords[1] - offset_x)
roi = input_img[start_y: start_y + face_height, start_x:start_x + face_width]
glass_bgr = sunglass_img_resized[:, :, :3]
overlay = (1 - thug_glass) * roi + thug_glass * glass_bgr
input_img[start_y: start_y + face_height, start_x:start_x + face_width] = overlay
music_file = 'media/ThugLife.mp3'
audio_bytes = open(music_file,'rb').read()
audio_bytes = base64.b64encode(audio_bytes).decode()
st.markdown(f'<audio autoplay controls><source src="data:audio/mp3;base64,{audio_bytes}" type="audio/mp3"></audio>', unsafe_allow_html=True)
return input_img