Rohan Kumar Singh
updated model
23df26a
raw
history blame
3.5 kB
from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers import AdamW
import pandas as pd
import torch
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.nn.utils.rnn import pad_sequence
# from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler
pl.seed_everything(100)
MODEL_NAME='t5-base'
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
INPUT_MAX_LEN = 128
OUTPUT_MAX_LEN = 128
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, model_max_length=512)
class T5Model(pl.LightningModule):
def __init__(self):
super().__init__()
self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict = True)
def forward(self, input_ids, attention_mask, labels=None):
output = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
return output.loss, output.logits
def training_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels= batch["target"]
loss, logits = self(input_ids , attention_mask, labels)
self.log("train_loss", loss, prog_bar=True, logger=True)
return {'loss': loss}
def validation_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
labels= batch["target"]
loss, logits = self(input_ids, attention_mask, labels)
self.log("val_loss", loss, prog_bar=True, logger=True)
return {'val_loss': loss}
def configure_optimizers(self):
return AdamW(self.parameters(), lr=0.0001)
train_model = T5Model.load_from_checkpoint('best-model.ckpt',map_location=DEVICE)
train_model.freeze()
def generate_question(question):
inputs_encoding = tokenizer(
question,
add_special_tokens=True,
max_length= INPUT_MAX_LEN,
padding = 'max_length',
truncation='only_first',
return_attention_mask=True,
return_tensors="pt"
)
generate_ids = train_model.model.generate(
input_ids = inputs_encoding["input_ids"],
attention_mask = inputs_encoding["attention_mask"],
max_length = INPUT_MAX_LEN,
num_beams = 4,
num_return_sequences = 1,
no_repeat_ngram_size=2,
early_stopping=True,
)
preds = [
tokenizer.decode(gen_id,
skip_special_tokens=True,
clean_up_tokenization_spaces=True)
for gen_id in generate_ids
]
return "".join(preds)
import gradio as gr
import random
import time
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
gr.Chatbot.style(chatbot,height=300)
msg = gr.Textbox(info="Press \'Enter\' to send")
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
bot_message = generate_question(history[-1][0])
history[-1][1] = ""
for character in bot_message:
history[-1][1] += character
time.sleep(0.05)
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=True)
demo.queue(concurrency_count=2)
demo.launch()