Royrotem100's picture
Changes app.py to a server
b7358fc
raw
history blame
4.53 kB
import os
import gradio as gr
from http import HTTPStatus
from typing import Generator, List, Optional, Tuple, Dict
from urllib.error import HTTPError
from flask import Flask, request, jsonify
from transformers import AutoTokenizer, AutoModelForCausalLM
import threading
import requests
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("./dictalm2.0-instruct")
model = AutoModelForCausalLM.from_pretrained("./dictalm2.0-instruct")
History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]
def clear_session() -> History:
return '', []
def history_to_messages(history: History) -> Messages:
messages = []
for h in history:
messages.append({'role': 'user', 'content': h[0].strip()})
messages.append({'role': 'assistant', 'content': h[1].strip()})
return messages
def messages_to_history(messages: Messages) -> Tuple[str, History]:
history = []
for q, r in zip(messages[0::2], messages[1::2]):
history.append([q['content'], r['content']])
return history
# Flask app setup
app = Flask(__name__)
@app.route('/predict', methods=['POST'])
def predict():
data = request.json
input_text = data.get('text', '')
# Format the input text with instruction tokens
formatted_text = f"<s>[INST] {input_text} [/INST]"
# Tokenize the input
inputs = tokenizer(formatted_text, return_tensors='pt')
# Generate the output
outputs = model.generate(inputs['input_ids'], max_length=1024, temperature=0.7, top_p=0.9)
# Decode the output
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
return jsonify({"prediction": prediction})
def run_flask():
app.run(host='0.0.0.0', port=5000)
# Run Flask in a separate thread
threading.Thread(target=run_flask).start()
def model_chat(query: Optional[str], history: Optional[History]) -> Generator[Tuple[str, History], None, None]:
if query is None:
query = ''
if history is None:
history = []
if not query.strip():
return
response = requests.post("http://127.0.0.1:5000/predict", json={"text": query.strip()})
if response.status_code == 200:
prediction = response.json().get("prediction", "")
history.append((query, prediction))
yield prediction, history
else:
yield "Error: Unable to get a response from the model.", history
with gr.Blocks(css='''
.gr-group {direction: rtl;}
.chatbot{text-align:right;}
.dicta-header {
background-color: var(--input-background-fill); /* Replace with desired background color */
border-radius: 10px;
padding: 20px;
text-align: center;
display: flex;
flex-direction: row;
align-items: center;
box-shadow: var(--block-shadow);
border-color: var(--block-border-color);
border-width: 1px;
}
@media (max-width: 768px) {
.dicta-header {
flex-direction: column; /* Change to vertical for mobile devices */
}
}
.chatbot.prose {
font-size: 1.2em;
}
.dicta-logo {
width: 150px; /* Replace with actual logo width as desired */
height: auto;
margin-bottom: 20px;
}
.dicta-intro-text {
margin-bottom: 20px;
text-align: center;
display: flex;
flex-direction: column;
align-items: center;
width: 100%;
font-size: 1.1em;
}
textarea {
font-size: 1.2em;
}
''', js=CUSTOM_JS) as demo:
gr.Markdown("""
<div class="dicta-header">
<a href="">
<img src="file/logo111.png" alt="Dicta Logo" class="dicta-logo">
</a>
<div class="dicta-intro-text">
<h1>爪'讗讟 诪注专讻讬 - 讛讚讙诪讛 专讗砖讜谞讬转</h1>
<span dir='rtl'>讘专讜讻讬诐 讛讘讗讬诐 诇讚诪讜 讛讗讬谞讟专讗拽讟讬讘讬 讛专讗砖讜谉. 讞拽专讜 讗转 讬讻讜诇讜转 讛诪讜讚诇 讜专讗讜 讻讬爪讚 讛讜讗 讬讻讜诇 诇住讬讬注 诇讻诐 讘诪砖讬诪讜转讬讻诐</span><br/>
<span dir='rtl'>讛讚诪讜 谞讻转讘 注诇 讬讚讬 住专谉 专讜注讬 专转诐 转讜讱 砖讬诪讜砖 讘诪讜讚诇 砖驻讛 讚讬拽讟讛 砖驻讜转讞 注诇 讬讚讬 诪驻讗"转</span><br/>
</div>
</div>
""")
interface = gr.ChatInterface(model_chat, fill_height=False)
interface.chatbot.rtl = True
interface.textbox.placeholder = "讛讻谞住 砖讗诇讛 讘注讘专讬转 (讗讜 讘讗谞讙诇讬转!)"
interface.textbox.rtl = True
interface.textbox.text_align = 'right'
interface.theme_css += '.gr-group {direction: rtl !important;}'
demo.queue(api_open=False).launch(max_threads=20, share=False, allowed_paths=['logo111.png'])