sketch2pose / src /pose_estimation.py
kbrodt's picture
Upload pose_estimation.py
5bd9834
import math
import cv2
import numpy as np
IMG_SIZE = (288, 384)
MEAN = np.array([0.485, 0.456, 0.406])
STD = np.array([0.229, 0.224, 0.225])
KPS = (
"Head",
"Neck",
"Right Shoulder",
"Right Arm",
"Right Hand",
"Left Shoulder",
"Left Arm",
"Left Hand",
"Spine",
"Hips",
"Right Upper Leg",
"Right Leg",
"Right Foot",
"Left Upper Leg",
"Left Leg",
"Left Foot",
"Left Toe",
"Right Toe",
)
SKELETON = (
(0, 1),
(1, 8),
(8, 9),
(9, 10),
(9, 13),
(10, 11),
(11, 12),
(13, 14),
(14, 15),
(1, 2),
(2, 3),
(3, 4),
(1, 5),
(5, 6),
(6, 7),
(15, 16),
(12, 17),
)
OPENPOSE_TO_GESTURE = (
0, # 0 Head\n",
1, # Neck\n",
2, # 2 Right Shoulder\n",
3, # Right Arm\n",
4, # 4 Right Hand\n",
5, # Left Shoulder\n",
6, # 6 Left Arm\n",
7, # Left Hand\n",
9, # 8 Hips\n",
10, # Right Upper Leg\n",
11, # 10Right Leg\n",
12, # Right Foot\n",
13, # 12Left Upper Leg\n",
14, # Left Leg\n",
15, # 14Left Foot\n",
-1, # \n",
-1, # 16\n",
-1, # \n",
-1, # 18\n",
16, # Left Toe\n",
-1, # 20\n",
-1, # \n",
17, # 22Right Toe\n",
-1, # \n",
-1, # 24\n",
)
def transform(img):
img = img.astype("float32") / 255
img = (img - MEAN) / STD
return np.transpose(img, axes=(2, 0, 1))
def get_affine_transform(
center,
scale,
rot,
output_size,
shift=np.array([0, 0], dtype=np.float32),
inv=0,
pixel_std=200,
):
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
scale = np.array([scale, scale])
scale_tmp = scale * pixel_std
src_w = scale_tmp[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.pi * rot / 180
src_dir = get_dir([0, src_w * -0.5], rot_rad)
dst_dir = np.array([0, dst_w * -0.5], np.float32)
src = np.zeros((3, 2), dtype=np.float32)
dst = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale_tmp * shift
src[1, :] = center + src_dir + scale_tmp * shift
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def get_3rd_point(a, b):
direct = a - b
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
def get_dir(src_point, rot_rad):
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
src_result = [0, 0]
src_result[0] = src_point[0] * cs - src_point[1] * sn
src_result[1] = src_point[0] * sn + src_point[1] * cs
return src_result
def process_image(path, input_img_size, pixel_std=200):
data_numpy = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
# BUG HERE. Must be uncommented
# data_numpy = cv2.cvtColor(data_numpy, cv2.COLOR_BGR2RGB)
h, w = data_numpy.shape[:2]
c = np.array([w / 2, h / 2], dtype=np.float32)
aspect_ratio = input_img_size[0] / input_img_size[1]
if w > aspect_ratio * h:
h = w * 1.0 / aspect_ratio
elif w < aspect_ratio * h:
w = h * aspect_ratio
s = np.array([w / pixel_std, h / pixel_std], dtype=np.float32) * 1.25
r = 0
trans = get_affine_transform(c, s, r, input_img_size, pixel_std=pixel_std)
input = cv2.warpAffine(data_numpy, trans, input_img_size, flags=cv2.INTER_LINEAR)
input = transform(input)
return input, data_numpy, c, s
def get_final_preds(batch_heatmaps, center, scale, post_process=False):
coords, maxvals = get_max_preds(batch_heatmaps)
heatmap_height = batch_heatmaps.shape[2]
heatmap_width = batch_heatmaps.shape[3]
# post-processing
if post_process:
for n in range(coords.shape[0]):
for p in range(coords.shape[1]):
hm = batch_heatmaps[n][p]
px = int(math.floor(coords[n][p][0] + 0.5))
py = int(math.floor(coords[n][p][1] + 0.5))
if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
diff = np.array(
[
hm[py][px + 1] - hm[py][px - 1],
hm[py + 1][px] - hm[py - 1][px],
]
)
coords[n][p] += np.sign(diff) * 0.25
preds = coords.copy()
# Transform back
for i in range(coords.shape[0]):
preds[i] = transform_preds(
coords[i], center[i], scale[i], [heatmap_width, heatmap_height]
)
return preds, maxvals
def transform_preds(coords, center, scale, output_size):
target_coords = np.zeros(coords.shape)
trans = get_affine_transform(center, scale, 0, output_size, inv=1)
for p in range(coords.shape[0]):
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
return target_coords
def affine_transform(pt, t):
new_pt = np.array([pt[0], pt[1], 1.0]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2]
def get_max_preds(batch_heatmaps):
"""
get predictions from score maps
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
"""
assert isinstance(
batch_heatmaps, np.ndarray
), "batch_heatmaps should be numpy.ndarray"
assert batch_heatmaps.ndim == 4, "batch_images should be 4-ndim"
batch_size = batch_heatmaps.shape[0]
num_joints = batch_heatmaps.shape[1]
width = batch_heatmaps.shape[3]
heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
idx = np.argmax(heatmaps_reshaped, 2)
maxvals = np.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
pred_mask = pred_mask.astype(np.float32)
preds *= pred_mask
return preds, maxvals
def infer_single_image(model, img_path, input_img_size=(288, 384), return_kps=True):
img_path = str(img_path)
pose_input, img, center, scale = process_image(
img_path, input_img_size=input_img_size
)
model.setInput(pose_input[None])
predicted_heatmap = model.forward()
if not return_kps:
return predicted_heatmap.squeeze(0)
predicted_keypoints, confidence = get_final_preds(
predicted_heatmap, center[None], scale[None], post_process=True
)
(predicted_keypoints, confidence, predicted_heatmap,) = (
predicted_keypoints.squeeze(0),
confidence.squeeze(0),
predicted_heatmap.squeeze(0),
)
return img, predicted_keypoints, confidence, predicted_heatmap