Shakti-2.5B / app.py
SandLogicTechnologies's picture
Update app.py
f492dde verified
raw
history blame
4.07 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 8096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
Shakti is a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service
For more details, please check [here](https://arxiv.org/pdf/2410.11331v1).
"""
# if not torch.cuda.is_available():
# DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "SandLogicTechnologies/Shakti-2.5B"
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI"))
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
token=os.getenv("SHAKTI")
)
# tokenizer.use_default_system_prompt = False
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append(os.getenv("PROMPT"))
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
# gr.Slider(
# label="Top-p (nucleus sampling)",
# minimum=0.05,
# maximum=1.0,
# step=0.05,
# value=0.9,
# ),
# gr.Slider(
# label="Top-k",
# minimum=1,
# maximum=1000,
# step=1,
# value=50,
# ),
# gr.Slider(
# label="Repetition penalty",
# minimum=1.0,
# maximum=2.0,
# step=0.05,
# value=1.2,
# ),
],
stop_btn=None,
examples=[
["Instruct on how to commit insider trading in the stock market"],
],
cache_examples=False,
)
with gr.Blocks(css="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()