File size: 5,856 Bytes
8031b06
 
 
 
 
 
 
 
 
 
 
 
09d933c
8031b06
 
 
 
 
09d933c
 
 
b5f0ef7
8031b06
 
 
09d933c
8031b06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f0ef7
8031b06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import subprocess
import random
from typing import Any

import gradio as gr
import joblib
import numpy as np
import pandas as pd

OUTPUT_DATA_PATH = "data/processed/app_dataset.csv"
PREDICTIONS_PATH = "models/predictions/app_predictions.csv"
UNIQUE_VALUES_PATH = "models/other/unique_column_values.pkl"
MODEL_PATH = "models/final_model.pkl"


def predict(*args: tuple) -> Any:
    app_df = pd.DataFrame(data=[args], columns=columns, index=[0])
    app_df.to_csv(OUTPUT_DATA_PATH, index=False)
    model = joblib.load(MODEL_PATH)
    predictions = model.predict_proba(app_df)
    print(predictions)
    if predictions[0][0] < 0.99:
        message = "Client is considered bad. Issuance of credit is not recommended."
    else:
        message = "Client is considered good. Issuance of credit is allowed."
    return round(predictions[0][0], 3), message


columns = (
    "YEARS_BIRTH",
    "CODE_GENDER",
    "AMT_INCOME_TOTAL",
    "NAME_INCOME_TYPE",
    "YEARS_EMPLOYED",
    "OCCUPATION_TYPE",
    "NAME_EDUCATION_TYPE",
    "CNT_FAM_MEMBERS",
    "CNT_CHILDREN",
    "NAME_FAMILY_STATUS",
    "FLAG_OWN_CAR",
    "FLAG_OWN_REALTY",
    "NAME_HOUSING_TYPE",
    "FLAG_PHONE",
    "FLAG_WORK_PHONE",
    "FLAG_EMAIL",
)
unique_values = joblib.load(UNIQUE_VALUES_PATH)

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            age = gr.Slider(label="Age", minimum=18, maximum=90, step=1, randomize=True)
            sex = gr.Dropdown(
                label="Sex",
                choices=unique_values["CODE_GENDER"],
                value=lambda: random.choice(unique_values["CODE_GENDER"]),
            )
            annual_income = gr.Slider(
                label="Annual income",
                minimum=0,
                maximum=1000000,
                step=10000,
                randomize=True,
            )
            income_type = gr.Dropdown(
                label="Income type",
                choices=unique_values["NAME_INCOME_TYPE"],
                value=lambda: random.choice(unique_values["NAME_INCOME_TYPE"]),
            )
            work_experience = gr.Slider(
                label="Work experience at current position",
                minimum=0,
                maximum=75,
                step=1,
                randomize=True,
            )
            occupation_type = gr.Dropdown(
                label="Occupation type",
                choices=unique_values["OCCUPATION_TYPE"],
                value=lambda: random.choice(unique_values["OCCUPATION_TYPE"]),
            )
            education_type = gr.Dropdown(
                label="Education type",
                choices=unique_values["NAME_EDUCATION_TYPE"],
                value=lambda: random.choice(unique_values["NAME_EDUCATION_TYPE"]),
            )
            amount_of_family_members = gr.Slider(
                label="Amount of family members",
                minimum=0,
                maximum=12,
                step=1,
                randomize=True,
            )
            amount_of_children = gr.Slider(
                label="Amount of children",
                minimum=0,
                maximum=10,
                step=1,
                randomize=True,
            )

        with gr.Column():
            family_status = gr.Dropdown(
                label="Family status",
                choices=unique_values["NAME_FAMILY_STATUS"],
                value=lambda: random.choice(unique_values["NAME_FAMILY_STATUS"]),
            )
            flag_own_car = gr.Dropdown(
                label="Having a car",
                choices=unique_values["FLAG_OWN_REALTY"],
                value=lambda: random.choice(unique_values["FLAG_OWN_REALTY"]),
            )
            flag_own_realty = gr.Dropdown(
                label="Having a realty",
                choices=unique_values["FLAG_OWN_REALTY"],
                value=lambda: random.choice(unique_values["FLAG_OWN_REALTY"]),
            )
            housing_type = gr.Dropdown(
                label="Housing type",
                choices=unique_values["NAME_HOUSING_TYPE"],
                value=lambda: random.choice(unique_values["NAME_HOUSING_TYPE"]),
            )
            flag_phone = gr.Dropdown(
                label="Having a phone",
                choices=unique_values["FLAG_PHONE"],
                value=lambda: random.choice(unique_values["FLAG_PHONE"]),
            )
            flag_work_phone = gr.Dropdown(
                label="Having a work phone",
                choices=unique_values["FLAG_WORK_PHONE"],
                value=lambda: random.choice(unique_values["FLAG_WORK_PHONE"]),
            )
            flag_email = gr.Dropdown(
                label="Having an email",
                choices=unique_values["FLAG_EMAIL"],
                value=lambda: random.choice(unique_values["FLAG_EMAIL"]),
            )

        with gr.Column():
            label_1 = gr.Label(label="Client rating")
            label_2 = gr.Textbox(label="Client verdict (client is considered bad if client rating < 0.99)")
            with gr.Row():
                predict_btn = gr.Button(value="Predict")
            predict_btn.click(
                predict,
                inputs=[
                    age,
                    sex,
                    annual_income,
                    income_type,
                    work_experience,
                    occupation_type,
                    education_type,
                    amount_of_family_members,
                    amount_of_children,
                    family_status,
                    flag_own_car,
                    flag_own_realty,
                    housing_type,
                    flag_phone,
                    flag_work_phone,
                    flag_email,
                ],
                outputs=[label_1, label_2],
            )

demo.launch()