Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import google.generativeai as genai | |
from langchain.chains.question_answering import load_qa_chain | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from PIL import Image | |
import io | |
from threading import Thread | |
from transformers import TextIteratorStreamer | |
# Configure Gemini API | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
# Load OpenELM model | |
checkpoint = "apple/OpenELM-270M" | |
checkpoint_tok = "meta-llama/Llama-2-7b-hf" | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint_tok) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
low_cpu_mem_usage = True if torch.cuda.is_available() else False | |
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch_dtype, trust_remote_code=True, low_cpu_mem_usage=low_cpu_mem_usage) | |
model.to(device) | |
# Adjust tokenizer settings | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
# Define other settings | |
max_new_tokens = 250 | |
repetition_penalty = 1.4 | |
rtl = False | |
# Function to process PDF using Gemini API | |
def process_pdf(file_path, question): | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
pdf_loader = PyPDFLoader(file_path) | |
pages = pdf_loader.load_and_split() | |
context = "\n".join(str(page.page_content) for page in pages[:200]) | |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) | |
return stuff_answer['output_text'] | |
# Function to process images using Gemini API | |
def process_image(image, question): | |
model = genai.GenerativeModel('gemini-pro-vision') | |
response = model.generate_content([image, question]) | |
return response.text | |
# Function to generate follow-up using OpenELM model | |
def generate_openelm_followup(answer): | |
prompt = f"Based on this answer: {answer}\nGenerate a follow-up question:" | |
inputs = tokenizer([prompt], return_tensors='pt').input_ids.to(model.device) | |
# Streaming output using TextIteratorStreamer | |
decode_kwargs = dict(skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
streamer = TextIteratorStreamer(tokenizer, timeout=5., decode_kwargs=decode_kwargs) | |
generation_kwargs = dict(input_ids=inputs, streamer=streamer, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
followup = "" | |
for new_text in streamer: | |
if new_text: | |
followup += new_text.replace(tokenizer.pad_token, "").replace(tokenizer.bos_token, "") | |
return followup | |
# Function to process input and generate output | |
def process_input(file, image, question): | |
try: | |
if file is not None: | |
gemini_answer = process_pdf(file.name, question) | |
elif image is not None: | |
gemini_answer = process_image(image, question) | |
else: | |
return "Please upload a PDF file or an image." | |
openelm_followup = generate_openelm_followup(gemini_answer) | |
combined_output = f"Gemini Answer: {gemini_answer}\n\nOpenELM Follow-up: {openelm_followup}" | |
return combined_output | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
# Define Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Multi-modal RAG Knowledge Retrieval using Gemini API and OpenELM Model") | |
with gr.Row(): | |
with gr.Column(): | |
input_file = gr.File(label="Upload PDF File") | |
input_image = gr.Image(type="pil", label="Upload Image") | |
input_question = gr.Textbox(label="Ask about the document or image") | |
output_text = gr.Textbox(label="Answer - Combined Gemini and OpenELM") | |
submit_button = gr.Button("Submit") | |
submit_button.click(fn=process_input, inputs=[input_file, input_image, input_question], outputs=output_text) | |
demo.launch() | |