Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
extractor = AutoFeatureExtractor.from_pretrained("susnato/plant_disease_detection-beans") | |
model = AutoModelForImageClassification.from_pretrained("susnato/plant_disease_detection-beans") | |
labels = ['angular_leaf_spot', 'rust', 'healthy'] | |
def classify(im): | |
features = extractor(im, return_tensors='pt') | |
logits = model(features["pixel_values"])[-1] | |
probability = torch.nn.functional.softmax(logits, dim=-1) | |
probs = probability[0].detach().numpy() | |
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} | |
return confidences | |
block = gr.Blocks(theme="JohnSmith9982/small_and_pretty") | |
with block: | |
gr.HTML( | |
""" | |
<h1 align="center">PLANT DISEASE DETECTION<h1> | |
""" | |
) | |
with gr.Group(): | |
with gr.Row(): | |
gr.HTML( | |
""" | |
<p style="color:black"> | |
<h4 style="font-color:powderblue;"> | |
<center>Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. <br><br> | |
Using Computer Vision models in plant disease detection and diagnosis has the potential to revolutionize the way we approach agriculture. By providing real-time monitoring and accurate detection of plant diseases, A.I. can help farmers reduce costs and increase crop</center> | |
</h4> | |
</p> | |
<p align="center"> | |
<img src="https://huggingface.co/datasets/susnato/stock_images/resolve/main/merged.png"> | |
</p> | |
""" | |
) | |
with gr.Group(): | |
with gr.Row(): | |
gr.HTML( | |
""" | |
<center><h3>Our Approach</h3></center> | |
<p align="center"> | |
<img src="https://huggingface.co/datasets/susnato/stock_images/resolve/main/diagram2.png"> | |
</p> | |
""" | |
) | |
with gr.Group(): | |
image = gr.Image(type='pil') | |
outputs = gr.Label() | |
button = gr.Button("Classify") | |
button.click(classify, | |
inputs=[image], | |
outputs=[outputs], | |
) | |
with gr.Group(): | |
gr.Examples(["ex3.jpg"], | |
fn=classify, | |
inputs=[image], | |
outputs=[outputs], | |
cache_examples=True | |
) | |
block.launch(debug=False, share=False) |