File size: 6,857 Bytes
5fc5efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d853f
5fc5efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import numpy as np
import torch
from diffusers import DDIMScheduler
from pytorch_lightning import seed_everything

from masactrl.diffuser_utils import MasaCtrlPipeline
from masactrl.masactrl_utils import (AttentionBase,
                                     regiter_attention_editor_diffusers)

from .app_utils import global_context

torch.set_grad_enabled(False)

# device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
#     "cpu")
# model_path = "andite/anything-v4.0"
# scheduler = DDIMScheduler(beta_start=0.00085,
#                           beta_end=0.012,
#                           beta_schedule="scaled_linear",
#                           clip_sample=False,
#                           set_alpha_to_one=False)
# model = MasaCtrlPipeline.from_pretrained(model_path,
#                                          scheduler=scheduler).to(device)


def consistent_synthesis(source_prompt, target_prompt, starting_step,
                         starting_layer, image_resolution, ddim_steps, scale,
                         seed, appended_prompt, negative_prompt):
    from masactrl.masactrl import MutualSelfAttentionControl

    model = global_context["model"]
    device = global_context["device"]

    seed_everything(seed)

    with torch.no_grad():
        if appended_prompt is not None:
            source_prompt += appended_prompt
            target_prompt += appended_prompt
        prompts = [source_prompt, target_prompt]

        # initialize the noise map
        start_code = torch.randn([1, 4, 64, 64], device=device)
        start_code = start_code.expand(len(prompts), -1, -1, -1)

        # inference the synthesized image without MasaCtrl
        editor = AttentionBase()
        regiter_attention_editor_diffusers(model, editor)
        target_image_ori = model([target_prompt],
                                 latents=start_code[-1:],
                                 guidance_scale=7.5)
        target_image_ori = target_image_ori.cpu().permute(0, 2, 3, 1).numpy()

        # inference the synthesized image with MasaCtrl
        # hijack the attention module
        controller = MutualSelfAttentionControl(starting_step, starting_layer)
        regiter_attention_editor_diffusers(model, controller)

        # inference the synthesized image
        image_masactrl = model(prompts, latents=start_code, guidance_scale=7.5)
        image_masactrl = image_masactrl.cpu().permute(0, 2, 3, 1).numpy()

    return [image_masactrl[0], target_image_ori[0],
            image_masactrl[1]]  # source, fixed seed, masactrl


def create_demo_synthesis():
    with gr.Blocks() as demo:
        gr.Markdown("## **Input Settings**")
        with gr.Row():
            with gr.Column():
                source_prompt = gr.Textbox(
                    label="Source Prompt",
                    value='1boy, casual, outdoors, sitting',
                    interactive=True)
                target_prompt = gr.Textbox(
                    label="Target Prompt",
                    value='1boy, casual, outdoors, standing',
                    interactive=True)
                with gr.Row():
                    ddim_steps = gr.Slider(label="DDIM Steps",
                                            minimum=1,
                                            maximum=999,
                                            value=50,
                                            step=1)
                    starting_step = gr.Slider(
                        label="Step of MasaCtrl",
                        minimum=0,
                        maximum=999,
                        value=4,
                        step=1)
                    starting_layer = gr.Slider(label="Layer of MasaCtrl",
                                                minimum=0,
                                                maximum=16,
                                                value=10,
                                                step=1)
                run_btn = gr.Button("Run")
            with gr.Column():
                appended_prompt = gr.Textbox(label="Appended Prompt", value='')
                negative_prompt = gr.Textbox(label="Negative Prompt", value='')
                with gr.Row():
                    image_resolution = gr.Slider(label="Image Resolution",
                                                minimum=256,
                                                maximum=768,
                                                value=512,
                                                step=64)
                    scale = gr.Slider(label="CFG Scale",
                                    minimum=0.1,
                                    maximum=30.0,
                                    value=7.5,
                                    step=0.1)
                    seed = gr.Slider(label="Seed",
                                    minimum=-1,
                                    maximum=2147483647,
                                    value=42,
                                    step=1)

        gr.Markdown("## **Output**")
        with gr.Row():
            image_source = gr.Image(label="Source Image")
            image_fixed = gr.Image(label="Image with Fixed Seed")
            image_masactrl = gr.Image(label="Image with MasaCtrl")

        inputs = [
            source_prompt, target_prompt, starting_step, starting_layer,
            image_resolution, ddim_steps, scale, seed, appended_prompt,
            negative_prompt
        ]
        run_btn.click(consistent_synthesis, inputs,
                        [image_source, image_fixed, image_masactrl])

        gr.Examples(
            [[
                "1boy, bishounen, casual, indoors, sitting, coffee shop, bokeh",
                "1boy, bishounen, casual, indoors, standing, coffee shop, bokeh",
                42
            ],
                [
                    "1boy, casual, outdoors, sitting",
                    "1boy, casual, outdoors, sitting, side view", 42
                ],
                [
                    "1boy, casual, outdoors, sitting",
                    "1boy, casual, outdoors, standing, clapping hands", 42
                ],
                [
                    "1boy, casual, outdoors, sitting",
                    "1boy, casual, outdoors, sitting, shows thumbs up", 42
                ],
                [
                    "1boy, casual, outdoors, sitting",
                    "1boy, casual, outdoors, sitting, with crossed arms", 42
                ],
                [
                    "1boy, casual, outdoors, sitting",
                    "1boy, casual, outdoors, sitting, rasing hands", 42
                ]],
            [source_prompt, target_prompt, seed],
        )
    return demo


if __name__ == "__main__":
    demo_syntehsis = create_demo_synthesis()
    demo_synthesis.launch()