Spaces:
Starting
on
A10G
Starting
on
A10G
File size: 14,210 Bytes
5fc5efa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import os
import torch
import torch.nn.functional as F
import numpy as np
from einops import rearrange
from .masactrl_utils import AttentionBase
from torchvision.utils import save_image
class MutualSelfAttentionControl(AttentionBase):
def __init__(self, start_step=4, start_layer=10, layer_idx=None, step_idx=None, total_steps=50):
"""
Mutual self-attention control for Stable-Diffusion model
Args:
start_step: the step to start mutual self-attention control
start_layer: the layer to start mutual self-attention control
layer_idx: list of the layers to apply mutual self-attention control
step_idx: list the steps to apply mutual self-attention control
total_steps: the total number of steps
"""
super().__init__()
self.total_steps = total_steps
self.start_step = start_step
self.start_layer = start_layer
self.layer_idx = layer_idx if layer_idx is not None else list(range(start_layer, 16))
self.step_idx = step_idx if step_idx is not None else list(range(start_step, total_steps))
print("step_idx: ", self.step_idx)
print("layer_idx: ", self.layer_idx)
def attn_batch(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
b = q.shape[0] // num_heads
q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)
sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
attn = sim.softmax(-1)
out = torch.einsum("h i j, h j d -> h i d", attn, v)
out = rearrange(out, "h (b n) d -> b n (h d)", b=b)
return out
def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
"""
Attention forward function
"""
if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
qu, qc = q.chunk(2)
ku, kc = k.chunk(2)
vu, vc = v.chunk(2)
attnu, attnc = attn.chunk(2)
out_u = self.attn_batch(qu, ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
out_c = self.attn_batch(qc, kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
out = torch.cat([out_u, out_c], dim=0)
return out
class MutualSelfAttentionControlMask(MutualSelfAttentionControl):
def __init__(self, start_step=4, start_layer=10, layer_idx=None, step_idx=None, total_steps=50, mask_s=None, mask_t=None, mask_save_dir=None):
"""
Maske-guided MasaCtrl to alleviate the problem of fore- and background confusion
Args:
start_step: the step to start mutual self-attention control
start_layer: the layer to start mutual self-attention control
layer_idx: list of the layers to apply mutual self-attention control
step_idx: list the steps to apply mutual self-attention control
total_steps: the total number of steps
mask_s: source mask with shape (h, w)
mask_t: target mask with same shape as source mask
"""
super().__init__(start_step, start_layer, layer_idx, step_idx, total_steps)
self.mask_s = mask_s # source mask with shape (h, w)
self.mask_t = mask_t # target mask with same shape as source mask
print("Using mask-guided MasaCtrl")
if mask_save_dir is not None:
os.makedirs(mask_save_dir, exist_ok=True)
save_image(self.mask_s.unsqueeze(0).unsqueeze(0), os.path.join(mask_save_dir, "mask_s.png"))
save_image(self.mask_t.unsqueeze(0).unsqueeze(0), os.path.join(mask_save_dir, "mask_t.png"))
def attn_batch(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
B = q.shape[0] // num_heads
H = W = int(np.sqrt(q.shape[1]))
q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)
sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
if kwargs.get("is_mask_attn") and self.mask_s is not None:
print("masked attention")
mask = self.mask_s.unsqueeze(0).unsqueeze(0)
mask = F.interpolate(mask, (H, W)).flatten(0).unsqueeze(0)
mask = mask.flatten()
# background
sim_bg = sim + mask.masked_fill(mask == 1, torch.finfo(sim.dtype).min)
# object
sim_fg = sim + mask.masked_fill(mask == 0, torch.finfo(sim.dtype).min)
sim = torch.cat([sim_fg, sim_bg], dim=0)
attn = sim.softmax(-1)
if len(attn) == 2 * len(v):
v = torch.cat([v] * 2)
out = torch.einsum("h i j, h j d -> h i d", attn, v)
out = rearrange(out, "(h1 h) (b n) d -> (h1 b) n (h d)", b=B, h=num_heads)
return out
def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
"""
Attention forward function
"""
if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
B = q.shape[0] // num_heads // 2
H = W = int(np.sqrt(q.shape[1]))
qu, qc = q.chunk(2)
ku, kc = k.chunk(2)
vu, vc = v.chunk(2)
attnu, attnc = attn.chunk(2)
out_u_source = self.attn_batch(qu[:num_heads], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
out_c_source = self.attn_batch(qc[:num_heads], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
out_u_target = self.attn_batch(qu[-num_heads:], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, is_mask_attn=True, **kwargs)
out_c_target = self.attn_batch(qc[-num_heads:], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, is_mask_attn=True, **kwargs)
if self.mask_s is not None and self.mask_t is not None:
out_u_target_fg, out_u_target_bg = out_u_target.chunk(2, 0)
out_c_target_fg, out_c_target_bg = out_c_target.chunk(2, 0)
mask = F.interpolate(self.mask_t.unsqueeze(0).unsqueeze(0), (H, W))
mask = mask.reshape(-1, 1) # (hw, 1)
out_u_target = out_u_target_fg * mask + out_u_target_bg * (1 - mask)
out_c_target = out_c_target_fg * mask + out_c_target_bg * (1 - mask)
out = torch.cat([out_u_source, out_u_target, out_c_source, out_c_target], dim=0)
return out
class MutualSelfAttentionControlMaskAuto(MutualSelfAttentionControl):
def __init__(self, start_step=4, start_layer=10, layer_idx=None, step_idx=None, total_steps=50, thres=0.1, ref_token_idx=[1], cur_token_idx=[1], mask_save_dir=None):
"""
MasaCtrl with mask auto generation from cross-attention map
Args:
start_step: the step to start mutual self-attention control
start_layer: the layer to start mutual self-attention control
layer_idx: list of the layers to apply mutual self-attention control
step_idx: list the steps to apply mutual self-attention control
total_steps: the total number of steps
thres: the thereshold for mask thresholding
ref_token_idx: the token index list for cross-attention map aggregation
cur_token_idx: the token index list for cross-attention map aggregation
mask_save_dir: the path to save the mask image
"""
super().__init__(start_step, start_layer, layer_idx, step_idx, total_steps)
print("using MutualSelfAttentionControlMaskAuto")
self.thres = thres
self.ref_token_idx = ref_token_idx
self.cur_token_idx = cur_token_idx
self.self_attns = []
self.cross_attns = []
self.cross_attns_mask = None
self.self_attns_mask = None
self.mask_save_dir = mask_save_dir
if self.mask_save_dir is not None:
os.makedirs(self.mask_save_dir, exist_ok=True)
def after_step(self):
self.self_attns = []
self.cross_attns = []
def attn_batch(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
B = q.shape[0] // num_heads
H = W = int(np.sqrt(q.shape[1]))
q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)
sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
if self.self_attns_mask is not None:
# binarize the mask
mask = self.self_attns_mask
thres = self.thres
mask[mask >= thres] = 1
mask[mask < thres] = 0
sim_fg = sim + mask.masked_fill(mask == 0, torch.finfo(sim.dtype).min)
sim_bg = sim + mask.masked_fill(mask == 1, torch.finfo(sim.dtype).min)
sim = torch.cat([sim_fg, sim_bg])
attn = sim.softmax(-1)
if len(attn) == 2 * len(v):
v = torch.cat([v] * 2)
out = torch.einsum("h i j, h j d -> h i d", attn, v)
out = rearrange(out, "(h1 h) (b n) d -> (h1 b) n (h d)", b=B, h=num_heads)
return out
def aggregate_cross_attn_map(self, idx):
attn_map = torch.stack(self.cross_attns, dim=1).mean(1) # (B, N, dim)
B = attn_map.shape[0]
res = int(np.sqrt(attn_map.shape[-2]))
attn_map = attn_map.reshape(-1, res, res, attn_map.shape[-1])
image = attn_map[..., idx]
if isinstance(idx, list):
image = image.sum(-1)
image_min = image.min(dim=1, keepdim=True)[0].min(dim=2, keepdim=True)[0]
image_max = image.max(dim=1, keepdim=True)[0].max(dim=2, keepdim=True)[0]
image = (image - image_min) / (image_max - image_min)
return image
def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
"""
Attention forward function
"""
if is_cross:
# save cross attention map with res 16 * 16
if attn.shape[1] == 16 * 16:
self.cross_attns.append(attn.reshape(-1, num_heads, *attn.shape[-2:]).mean(1))
if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
B = q.shape[0] // num_heads // 2
H = W = int(np.sqrt(q.shape[1]))
qu, qc = q.chunk(2)
ku, kc = k.chunk(2)
vu, vc = v.chunk(2)
attnu, attnc = attn.chunk(2)
out_u_source = self.attn_batch(qu[:num_heads], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
out_c_source = self.attn_batch(qc[:num_heads], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
if len(self.cross_attns) == 0:
self.self_attns_mask = None
out_u_target = self.attn_batch(qu[-num_heads:], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
out_c_target = self.attn_batch(qc[-num_heads:], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
else:
mask = self.aggregate_cross_attn_map(idx=self.ref_token_idx) # (2, H, W)
mask_source = mask[-2] # (H, W)
res = int(np.sqrt(q.shape[1]))
self.self_attns_mask = F.interpolate(mask_source.unsqueeze(0).unsqueeze(0), (res, res)).flatten()
if self.mask_save_dir is not None:
H = W = int(np.sqrt(self.self_attns_mask.shape[0]))
mask_image = self.self_attns_mask.reshape(H, W).unsqueeze(0)
save_image(mask_image, os.path.join(self.mask_save_dir, f"mask_s_{self.cur_step}_{self.cur_att_layer}.png"))
out_u_target = self.attn_batch(qu[-num_heads:], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
out_c_target = self.attn_batch(qc[-num_heads:], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
if self.self_attns_mask is not None:
mask = self.aggregate_cross_attn_map(idx=self.cur_token_idx) # (2, H, W)
mask_target = mask[-1] # (H, W)
res = int(np.sqrt(q.shape[1]))
spatial_mask = F.interpolate(mask_target.unsqueeze(0).unsqueeze(0), (res, res)).reshape(-1, 1)
if self.mask_save_dir is not None:
H = W = int(np.sqrt(spatial_mask.shape[0]))
mask_image = spatial_mask.reshape(H, W).unsqueeze(0)
save_image(mask_image, os.path.join(self.mask_save_dir, f"mask_t_{self.cur_step}_{self.cur_att_layer}.png"))
# binarize the mask
thres = self.thres
spatial_mask[spatial_mask >= thres] = 1
spatial_mask[spatial_mask < thres] = 0
out_u_target_fg, out_u_target_bg = out_u_target.chunk(2)
out_c_target_fg, out_c_target_bg = out_c_target.chunk(2)
out_u_target = out_u_target_fg * spatial_mask + out_u_target_bg * (1 - spatial_mask)
out_c_target = out_c_target_fg * spatial_mask + out_c_target_bg * (1 - spatial_mask)
# set self self-attention mask to None
self.self_attns_mask = None
out = torch.cat([out_u_source, out_u_target, out_c_source, out_c_target], dim=0)
return out
|