Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from typing import Optional, Union, Tuple, List, Callable, Dict | |
from torchvision.utils import save_image | |
from einops import rearrange, repeat | |
class AttentionBase: | |
def __init__(self): | |
self.cur_step = 0 | |
self.num_att_layers = -1 | |
self.cur_att_layer = 0 | |
def after_step(self): | |
pass | |
def __call__(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs): | |
out = self.forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs) | |
self.cur_att_layer += 1 | |
if self.cur_att_layer == self.num_att_layers: | |
self.cur_att_layer = 0 | |
self.cur_step += 1 | |
# after step | |
self.after_step() | |
return out | |
def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs): | |
out = torch.einsum('b i j, b j d -> b i d', attn, v) | |
out = rearrange(out, '(b h) n d -> b n (h d)', h=num_heads) | |
return out | |
def reset(self): | |
self.cur_step = 0 | |
self.cur_att_layer = 0 | |
class AttentionStore(AttentionBase): | |
def __init__(self, res=[32], min_step=0, max_step=1000): | |
super().__init__() | |
self.res = res | |
self.min_step = min_step | |
self.max_step = max_step | |
self.valid_steps = 0 | |
self.self_attns = [] # store the all attns | |
self.cross_attns = [] | |
self.self_attns_step = [] # store the attns in each step | |
self.cross_attns_step = [] | |
def after_step(self): | |
if self.cur_step > self.min_step and self.cur_step < self.max_step: | |
self.valid_steps += 1 | |
if len(self.self_attns) == 0: | |
self.self_attns = self.self_attns_step | |
self.cross_attns = self.cross_attns_step | |
else: | |
for i in range(len(self.self_attns)): | |
self.self_attns[i] += self.self_attns_step[i] | |
self.cross_attns[i] += self.cross_attns_step[i] | |
self.self_attns_step.clear() | |
self.cross_attns_step.clear() | |
def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs): | |
if attn.shape[1] <= 64 ** 2: # avoid OOM | |
if is_cross: | |
self.cross_attns_step.append(attn) | |
else: | |
self.self_attns_step.append(attn) | |
return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs) | |
def regiter_attention_editor_diffusers(model, editor: AttentionBase): | |
""" | |
Register a attention editor to Diffuser Pipeline, refer from [Prompt-to-Prompt] | |
""" | |
def ca_forward(self, place_in_unet): | |
def forward(x, encoder_hidden_states=None, attention_mask=None, context=None, mask=None): | |
""" | |
The attention is similar to the original implementation of LDM CrossAttention class | |
except adding some modifications on the attention | |
""" | |
if encoder_hidden_states is not None: | |
context = encoder_hidden_states | |
if attention_mask is not None: | |
mask = attention_mask | |
to_out = self.to_out | |
if isinstance(to_out, nn.modules.container.ModuleList): | |
to_out = self.to_out[0] | |
else: | |
to_out = self.to_out | |
h = self.heads | |
q = self.to_q(x) | |
is_cross = context is not None | |
context = context if is_cross else x | |
k = self.to_k(context) | |
v = self.to_v(context) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale | |
if mask is not None: | |
mask = rearrange(mask, 'b ... -> b (...)') | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
mask = mask[:, None, :].repeat(h, 1, 1) | |
sim.masked_fill_(~mask, max_neg_value) | |
attn = sim.softmax(dim=-1) | |
# the only difference | |
out = editor( | |
q, k, v, sim, attn, is_cross, place_in_unet, | |
self.heads, scale=self.scale) | |
return to_out(out) | |
return forward | |
def register_editor(net, count, place_in_unet): | |
for name, subnet in net.named_children(): | |
if net.__class__.__name__ == 'Attention': # spatial Transformer layer | |
net.forward = ca_forward(net, place_in_unet) | |
return count + 1 | |
elif hasattr(net, 'children'): | |
count = register_editor(subnet, count, place_in_unet) | |
return count | |
cross_att_count = 0 | |
for net_name, net in model.unet.named_children(): | |
if "down" in net_name: | |
cross_att_count += register_editor(net, 0, "down") | |
elif "mid" in net_name: | |
cross_att_count += register_editor(net, 0, "mid") | |
elif "up" in net_name: | |
cross_att_count += register_editor(net, 0, "up") | |
editor.num_att_layers = cross_att_count | |
def regiter_attention_editor_ldm(model, editor: AttentionBase): | |
""" | |
Register a attention editor to Stable Diffusion model, refer from [Prompt-to-Prompt] | |
""" | |
def ca_forward(self, place_in_unet): | |
def forward(x, encoder_hidden_states=None, attention_mask=None, context=None, mask=None): | |
""" | |
The attention is similar to the original implementation of LDM CrossAttention class | |
except adding some modifications on the attention | |
""" | |
if encoder_hidden_states is not None: | |
context = encoder_hidden_states | |
if attention_mask is not None: | |
mask = attention_mask | |
to_out = self.to_out | |
if isinstance(to_out, nn.modules.container.ModuleList): | |
to_out = self.to_out[0] | |
else: | |
to_out = self.to_out | |
h = self.heads | |
q = self.to_q(x) | |
is_cross = context is not None | |
context = context if is_cross else x | |
k = self.to_k(context) | |
v = self.to_v(context) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale | |
if mask is not None: | |
mask = rearrange(mask, 'b ... -> b (...)') | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
mask = mask[:, None, :].repeat(h, 1, 1) | |
sim.masked_fill_(~mask, max_neg_value) | |
attn = sim.softmax(dim=-1) | |
# the only difference | |
out = editor( | |
q, k, v, sim, attn, is_cross, place_in_unet, | |
self.heads, scale=self.scale) | |
return to_out(out) | |
return forward | |
def register_editor(net, count, place_in_unet): | |
for name, subnet in net.named_children(): | |
if net.__class__.__name__ == 'CrossAttention': # spatial Transformer layer | |
net.forward = ca_forward(net, place_in_unet) | |
return count + 1 | |
elif hasattr(net, 'children'): | |
count = register_editor(subnet, count, place_in_unet) | |
return count | |
cross_att_count = 0 | |
for net_name, net in model.model.diffusion_model.named_children(): | |
if "input" in net_name: | |
cross_att_count += register_editor(net, 0, "input") | |
elif "middle" in net_name: | |
cross_att_count += register_editor(net, 0, "middle") | |
elif "output" in net_name: | |
cross_att_count += register_editor(net, 0, "output") | |
editor.num_att_layers = cross_att_count | |