Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import wikipediaapi
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Initialize inference client for chat
|
6 |
-
|
7 |
# Initialize Wikipedia API
|
8 |
wiki_wiki = wikipediaapi.Wikipedia('en')
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def search_wikipedia(query):
|
11 |
page = wiki_wiki.page(query)
|
12 |
if page.exists():
|
@@ -30,7 +45,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
30 |
|
31 |
# Generate response from chat model
|
32 |
response = ""
|
33 |
-
for message in
|
34 |
messages,
|
35 |
max_tokens=max_tokens,
|
36 |
stream=True,
|
@@ -41,28 +56,60 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
41 |
response += token
|
42 |
yield response, search_response # Return both responses
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Gradio interface setup using Blocks
|
45 |
with gr.Blocks() as demo:
|
46 |
-
gr.Markdown("##
|
|
|
47 |
with gr.Row():
|
48 |
with gr.Column():
|
49 |
system_message = gr.Textbox(value="You are a friendly Chatbot named Tirth.", label="System message")
|
50 |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
51 |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
52 |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
53 |
-
|
54 |
with gr.Column():
|
55 |
chat_output = gr.Chatbox(label="Chat History")
|
56 |
user_input = gr.Textbox(placeholder="Type your message here...", label="Your Message")
|
57 |
submit_btn = gr.Button("Send")
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def on_submit(message, history):
|
61 |
response, search_response = respond(message, history, system_message.value, max_tokens.value, temperature.value, top_p.value)
|
62 |
return history + [(message, response)], search_response
|
63 |
|
64 |
# Connect the button to the submission function
|
65 |
submit_btn.click(on_submit, inputs=[user_input, chat_output], outputs=[chat_output, gr.Textbox(label="Wikipedia Summary")])
|
|
|
|
|
|
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import wikipediaapi
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
import torch
|
7 |
+
from torchvision import transforms
|
8 |
+
from torchvision.models import resnet50
|
9 |
|
10 |
# Initialize inference client for chat
|
11 |
+
chat_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
# Initialize Wikipedia API
|
13 |
wiki_wiki = wikipediaapi.Wikipedia('en')
|
14 |
|
15 |
+
# Load pre-trained image classification model
|
16 |
+
model = resnet50(pretrained=True)
|
17 |
+
model.eval()
|
18 |
+
transform = transforms.Compose([
|
19 |
+
transforms.Resize(256),
|
20 |
+
transforms.CenterCrop(224),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
23 |
+
])
|
24 |
+
|
25 |
def search_wikipedia(query):
|
26 |
page = wiki_wiki.page(query)
|
27 |
if page.exists():
|
|
|
45 |
|
46 |
# Generate response from chat model
|
47 |
response = ""
|
48 |
+
for message in chat_client.chat_completion(
|
49 |
messages,
|
50 |
max_tokens=max_tokens,
|
51 |
stream=True,
|
|
|
56 |
response += token
|
57 |
yield response, search_response # Return both responses
|
58 |
|
59 |
+
def classify_image(image):
|
60 |
+
image = transform(image).unsqueeze(0)
|
61 |
+
with torch.no_grad():
|
62 |
+
output = model(image)
|
63 |
+
_, predicted = torch.max(output, 1)
|
64 |
+
return f"Predicted class index: {predicted.item()}"
|
65 |
+
|
66 |
+
# Placeholder functions for video generation and classification
|
67 |
+
def generate_video(video):
|
68 |
+
return video # Placeholder: Just returns the input video for now
|
69 |
+
|
70 |
+
def classify_video(video):
|
71 |
+
return "Video classification logic not implemented." # Placeholder
|
72 |
+
|
73 |
# Gradio interface setup using Blocks
|
74 |
with gr.Blocks() as demo:
|
75 |
+
gr.Markdown("## Multi-Functional AI Interface")
|
76 |
+
|
77 |
with gr.Row():
|
78 |
with gr.Column():
|
79 |
system_message = gr.Textbox(value="You are a friendly Chatbot named Tirth.", label="System message")
|
80 |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
81 |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
82 |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
83 |
+
|
84 |
with gr.Column():
|
85 |
chat_output = gr.Chatbox(label="Chat History")
|
86 |
user_input = gr.Textbox(placeholder="Type your message here...", label="Your Message")
|
87 |
submit_btn = gr.Button("Send")
|
88 |
|
89 |
+
# Image Classification
|
90 |
+
image_input = gr.Image(type="pil", label="Upload an Image for Classification")
|
91 |
+
classify_btn = gr.Button("Classify Image")
|
92 |
+
classification_output = gr.Textbox(label="Classification Result")
|
93 |
+
|
94 |
+
# Video Generation
|
95 |
+
video_input = gr.Video(label="Upload a Video for Generation")
|
96 |
+
generate_video_btn = gr.Button("Generate Video")
|
97 |
+
video_output = gr.Video(label="Generated Video")
|
98 |
+
|
99 |
+
# Video Classification
|
100 |
+
video_class_input = gr.Video(label="Upload a Video for Classification")
|
101 |
+
classify_video_btn = gr.Button("Classify Video")
|
102 |
+
video_classification_output = gr.Textbox(label="Video Classification Result")
|
103 |
+
|
104 |
def on_submit(message, history):
|
105 |
response, search_response = respond(message, history, system_message.value, max_tokens.value, temperature.value, top_p.value)
|
106 |
return history + [(message, response)], search_response
|
107 |
|
108 |
# Connect the button to the submission function
|
109 |
submit_btn.click(on_submit, inputs=[user_input, chat_output], outputs=[chat_output, gr.Textbox(label="Wikipedia Summary")])
|
110 |
+
classify_btn.click(classify_image, inputs=image_input, outputs=classification_output)
|
111 |
+
generate_video_btn.click(generate_video, inputs=video_input, outputs=video_output)
|
112 |
+
classify_video_btn.click(classify_video, inputs=video_class_input, outputs=video_classification_output)
|
113 |
|
114 |
if __name__ == "__main__":
|
115 |
demo.launch()
|