Spaces:
Build error
Build error
add jina embeddings and reranker
Browse files- yijinaembed.py +4 -4
yijinaembed.py
CHANGED
@@ -20,8 +20,8 @@ import spaces
|
|
20 |
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
|
21 |
from langchain_community.document_compressors.jina_rerank import JinaRerank
|
22 |
from langchain import hub
|
23 |
-
from langchain.chains import create_retrieval_chain
|
24 |
-
from langchain.chains.
|
25 |
|
26 |
load_dotenv()
|
27 |
|
@@ -140,7 +140,7 @@ def add_documents_to_chroma(documents: list, embedding_function: JinaEmbeddingFu
|
|
140 |
@spaces.GPU
|
141 |
def rerank_documents(query: str, documents: List[str]) -> List[str]:
|
142 |
compressor = JinaRerank()
|
143 |
-
retriever = chroma_db.as_retriever(search_kwargs={"k":
|
144 |
compression_retriever = ContextualCompressionRetriever(
|
145 |
base_compressor=compressor, base_retriever=retriever
|
146 |
)
|
@@ -153,7 +153,7 @@ def query_chroma(query_text: str, embedding_function: JinaEmbeddingFunction):
|
|
153 |
query_embeddings, query_metadata = embedding_function.compute_embeddings(query_text)
|
154 |
result_docs = chroma_collection.query(
|
155 |
query_embeddings=[query_embeddings],
|
156 |
-
n_results=
|
157 |
)
|
158 |
return result_docs
|
159 |
|
|
|
20 |
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
|
21 |
from langchain_community.document_compressors.jina_rerank import JinaRerank
|
22 |
from langchain import hub
|
23 |
+
from langchain.chains.retrieval import create_retrieval_chain
|
24 |
+
from langchain.chains.combine_documents.stuff import create_stuff_documents_chain
|
25 |
|
26 |
load_dotenv()
|
27 |
|
|
|
140 |
@spaces.GPU
|
141 |
def rerank_documents(query: str, documents: List[str]) -> List[str]:
|
142 |
compressor = JinaRerank()
|
143 |
+
retriever = chroma_db.as_retriever(search_kwargs={"k": 15})
|
144 |
compression_retriever = ContextualCompressionRetriever(
|
145 |
base_compressor=compressor, base_retriever=retriever
|
146 |
)
|
|
|
153 |
query_embeddings, query_metadata = embedding_function.compute_embeddings(query_text)
|
154 |
result_docs = chroma_collection.query(
|
155 |
query_embeddings=[query_embeddings],
|
156 |
+
n_results=5
|
157 |
)
|
158 |
return result_docs
|
159 |
|