Spaces:
Running
Running
File size: 4,079 Bytes
cabc588 068e46c cabc588 ef556b4 8b957f4 cabc588 1fd3263 efac2ab 42c16c8 efac2ab d8dc7cb efac2ab 42c16c8 9f19a81 42c16c8 9f19a81 42c16c8 1fd3263 42c16c8 c749916 42c16c8 c749916 42c16c8 1fd3263 411cf73 1fd3263 cabc588 1fd3263 cabc588 42c16c8 cabc588 d8dc7cb adf568b d8dc7cb 8e9ce14 cabc588 d8dc7cb cabc588 1fd3263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import numpy as np
import tempfile
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, BatchNormalization, GlobalAveragePooling2D
from tensorflow.keras.models import Model, load_model, Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import Precision, Recall
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.utils.class_weight import compute_class_weight
from sklearn.model_selection import train_test_split
from tensorflow.image import resize
import cv2
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt
import warnings
import warnings
warnings.filterwarnings("ignore")
# print ('modules loaded')
import streamlit as st
import pandas as pd
import numpy as np
from PIL import Image
import tensorflow.keras as keras
st.title("Skin Cancer Classification App")
models = {
"Le_Net": load_model('LeNet_5.h5'),
"Simple_CNN": load_model('Simple CNN.h5'),
"Alex_Net": load_model('AlexNet.h5'),
"Deeper_CNN": load_model('Deeper CNN.h5')
}
# Allow user to select model
model_name = st.selectbox("Choose a model", list(models.keys()))
model = models[model_name]
# Upload Image
file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
# file ='hmnist_28_28_RGB.csv'
print(file)
true_file=pd.read_csv("HAM10000_metadata.csv")
# true_file.apply(lambda x: x["image_id"] ==file)
# uploaded_file = st.file_uploader("Choose a image file", type="jpg")
# if uploaded_file is not None:
# # Convert the file to an opencv image.
# file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
# opencv_image = cv2.imdecode(file_bytes, 1)
# st.image(opencv_image, channels="BGR")
classes = {4: ('nv', ' melanocytic nevi'), 6: ('mel', 'melanoma'),
2 :('bkl', 'benign keratosis-like lesions'), 1:('bcc' , ' basal cell carcinoma'),
5: ('vasc', ' pyogenic granulomas and hemorrhage'),
0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
3: ('df', 'dermatofibroma')}
if file is not None:
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
opencv_image = cv2.imdecode(file_bytes, 1)
# temp_dir = tempfile.TemporaryDirectory()
# temp_file_path = temp_dir.name + "/" + file.name
# # Save the uploaded file to the temporary directory
# with open(temp_file_path, "wb") as f:
# f.write(file.read())
# img = cv2.imread(file)
# cv2_imshow(img)
img1 = cv2.resize(opencv_image, (32, 32))
result = model.predict(img1.reshape(1, 32, 32, 3))
max_prob = max(result[0])
class_ind = list(result[0]).index(max_prob)
class_name = classes[class_ind]
# print(class_name)
# count+=1
# if count>10:
# break
# df = pd.read_csv(file)
# # Get first row
# img_reshaped = image_resize(df)
# # Get prediction
# pred = model.predict(img_reshaped)
# label = np.argmax(pred)
# Display image and result
col1, col2 = st.columns(2)
with col1:
st.header("Input Image")
st.image(opencv_image, channels="BGR")
with col2:
st.header("Results")
# st.write(file.name)
# st.write("True Label",true_file[true_file.image_id==file.name]["dx"])
st.write("Prediction",class_name[0])
st.metric("Category:", class_name[1])
# from google.colab.patches import cv2_imshow
# srcdir = '/kaggle/input/skin-cancer-mnist-ham10000/HAM10000_images_part_1'
# count=0
# for temp in os.listdir(srcdir):
# img = cv2.imread(os.path.join(srcdir, temp))
# cv2.imwrite(temp, img)
# cv2_imshow(img)
# img = cv2.resize(img, (28, 28))
# result = model.predict(img.reshape(1, 28, 28, 3))
# max_prob = max(result[0])
# class_ind = list(result[0]).index(max_prob)
# class_name = classes[class_ind]
# print(class_name)
# count+=1
# if count>10:
# break
|