File size: 4,049 Bytes
cabc588
068e46c
cabc588
 
 
 
 
 
 
 
 
 
ef556b4
8b957f4
cabc588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fd3263
 
 
 
 
efac2ab
42c16c8
efac2ab
d8dc7cb
efac2ab
 
42c16c8
 
 
9f19a81
 
 
 
42c16c8
9f19a81
42c16c8
 
1fd3263
 
 
 
 
 
 
42c16c8
 
 
 
 
 
 
 
c749916
42c16c8
 
 
c749916
42c16c8
1fd3263
411cf73
 
1fd3263
 
 
 
 
 
 
 
 
 
 
 
cabc588
1fd3263
 
 
 
cabc588
 
 
 
 
42c16c8
cabc588
d8dc7cb
 
 
8e9ce14
cabc588
d8dc7cb
 
cabc588
 
 
 
1fd3263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import tempfile
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, BatchNormalization, GlobalAveragePooling2D
from tensorflow.keras.models import Model, load_model, Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import Precision, Recall
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.utils.class_weight import compute_class_weight
from sklearn.model_selection import train_test_split
from tensorflow.image import resize
import cv2

from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt
import warnings
import warnings
warnings.filterwarnings("ignore")

# print ('modules loaded')


import streamlit as st
import pandas as pd 
import numpy as np
from PIL import Image
import tensorflow.keras as keras

st.title("Skin Cancer Classification App")

models = {
  "Le_Net": load_model('LeNet_5.h5'),
  "Simple_CNN": load_model('Simple CNN.h5'),
  "Alex_Net": load_model('AlexNet.h5'),
  "Deeper_CNN": load_model('Deeper CNN.h5')
}

# Allow user to select model
model_name = st.selectbox("Choose a model", list(models.keys()))
model = models[model_name]

# Upload Image

file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
# file ='hmnist_28_28_RGB.csv'

print(file)

true_file=pd.read_csv("HAM10000_metadata.csv")


# true_file.apply(lambda x: x["image_id"] ==file)

# uploaded_file = st.file_uploader("Choose a image file", type="jpg")

# if uploaded_file is not None:
#     # Convert the file to an opencv image.
#     file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
#     opencv_image = cv2.imdecode(file_bytes, 1)

#     st.image(opencv_image, channels="BGR")
    

classes = {4: ('nv', ' melanocytic nevi'), 6: ('mel', 'melanoma'),
           2 :('bkl', 'benign keratosis-like lesions'), 1:('bcc' , ' basal cell carcinoma'),
           5: ('vasc', ' pyogenic granulomas and hemorrhage'),
           0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
           3: ('df', 'dermatofibroma')}


if file is not None:

    file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
    opencv_image = cv2.imdecode(file_bytes, 1)
    
    
    # temp_dir = tempfile.TemporaryDirectory()
    # temp_file_path = temp_dir.name + "/" + file.name
    
    # # Save the uploaded file to the temporary directory
    # with open(temp_file_path, "wb") as f:
    #     f.write(file.read())
        
    # img = cv2.imread(file)
    # cv2_imshow(img)
    img1 = cv2.resize(opencv_image, (32, 32))
    result = model.predict(img1.reshape(1, 32, 32, 3))
    max_prob = max(result[0])
    class_ind = list(result[0]).index(max_prob)
    class_name = classes[class_ind]
    # print(class_name)
    # count+=1
    # if count>10:
    #     break

        
    # df = pd.read_csv(file)  
    # # Get first row 
    # img_reshaped = image_resize(df)
    
    # # Get prediction
    # pred = model.predict(img_reshaped)
    # label = np.argmax(pred)

    
    # Display image and result 
    col1, col2 = st.columns(2)
    with col1:
        st.header("Input Image")
        st.image(opencv_image, channels="BGR")
    with col2:
        st.header("Results")
        st.write("True Label",true_file[true_file["image_id"]==file]["dx"][0]])
        st.write("Prediction",class_name[0])
        st.metric("Category:", class_name[1])

        





# from google.colab.patches import cv2_imshow
# srcdir = '/kaggle/input/skin-cancer-mnist-ham10000/HAM10000_images_part_1'
# count=0
# for temp in os.listdir(srcdir):
#     img = cv2.imread(os.path.join(srcdir, temp))
#     cv2.imwrite(temp, img)
#     cv2_imshow(img)
#     img = cv2.resize(img, (28, 28))
#     result = model.predict(img.reshape(1, 28, 28, 3))
#     max_prob = max(result[0])
#     class_ind = list(result[0]).index(max_prob)
#     class_name = classes[class_ind]
#     print(class_name)
#     count+=1
#     if count>10:
#         break