Spaces:
Sleeping
Sleeping
File size: 1,798 Bytes
ad4fcaa d630363 ad4fcaa 294d474 ad4fcaa 703084a ad4fcaa f05e9cf 0e016e5 621839f e05c142 6e2b814 9e00db0 5a82a41 c62c176 00a296f e7cbd9e f85173a f4154bf ae5b413 f4154bf 7c7ed6c e1248f0 21fa99a 5a82a41 bce1681 9495165 ad4fcaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
import subprocess
import os
import json
import uuid
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler, EulerDiscreteScheduler
app = FastAPI()
@app.get("/generate")
def generate_image(prompt, inference_steps, model):
torch.cuda.empty_cache()
pipeline = StableDiffusionPipeline.from_pretrained(str(model), torch_dtype=torch.float16)
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to("cuda")
image = pipeline(prompt, num_inference_steps=int(inference_steps), height=512, width=512).images[0]
filename = str(uuid.uuid4()) + ".jpg"
image.save(filename)
assertion = {
"assertions": [
{
"label": "com.truepic.custom.ai",
"data": {
"model_name": model,
"model_version": "1.0",
"prompt": prompt
}
}
]
}
json_object = json.dumps(assertion, indent=4)
with open("assertion.json", "w") as outfile:
outfile.write(json_object)
subprocess.check_output(['./truepic-sign', 'init', 'file-system', '--api-key', os.environ.get("api_key")])
subprocess.check_output(['./truepic-sign', 'sign', filename, '--assertions-file', 'assertion.json', '--output', (os.getcwd() + '/static/' + filename)])
return {"response": filename}
app.mount("/", StaticFiles(directory="static", html=True), name="static")
@app.get("/")
def index() -> FileResponse:
return FileResponse(path="/app/static/index.html", media_type="text/html")
|