TuringsSolutions's picture
Update app.py
575f7ee verified
import os
import spaces
import gradio as gr
import numpy as np
import tensorflow as tf
from keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input
from keras.models import Model
import matplotlib.pyplot as plt
import logging
from skimage.transform import resize
from PIL import Image, ImageEnhance, ImageFilter
from tqdm import tqdm
# Disable GPU usage by default
os.environ['CUDA_VISIBLE_DEVICES'] = ''
class SwarmAgent:
def __init__(self, position, velocity):
self.position = position
self.velocity = velocity
self.m = np.zeros_like(position)
self.v = np.zeros_like(position)
class SwarmNeuralNetwork:
def __init__(self, num_agents, image_shape, target_image_path):
self.image_shape = image_shape
self.resized_shape = (128, 128, 3) # Reduced resolution
self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
self.target_image = self.load_target_image(target_image_path)
self.generated_image = np.random.randn(*image_shape) # Start with noise
self.mobilenet = self.load_mobilenet_model()
self.current_epoch = 0
self.noise_schedule = np.linspace(0.1, 0.002, 1000) # Noise schedule
def random_position(self):
return np.random.randn(*self.image_shape) # Use Gaussian noise
def random_velocity(self):
return np.random.randn(*self.image_shape) * 0.01
def load_target_image(self, img_path):
img = Image.open(img_path)
img = img.resize((self.image_shape[1], self.image_shape[0]))
img_array = np.array(img) / 127.5 - 1 # Normalize to [-1, 1]
plt.imshow((img_array + 1) / 2) # Convert back to [0, 1] for display
plt.title('Target Image')
plt.show()
return img_array
def resize_image(self, image):
return resize(image, self.resized_shape, anti_aliasing=True)
def load_mobilenet_model(self):
mobilenet = MobileNetV2(weights='imagenet', include_top=False, input_shape=self.resized_shape)
return Model(inputs=mobilenet.input, outputs=mobilenet.get_layer('block_13_expand_relu').output)
def add_positional_encoding(self, image):
h, w, c = image.shape
pos_enc = np.zeros_like(image)
for i in range(h):
for j in range(w):
pos_enc[i, j, :] = [i/h, j/w, 0]
return image + pos_enc
def multi_head_attention(self, agent, num_heads=4):
attention_scores = []
for _ in range(num_heads):
similarity = np.exp(-np.sum((agent.position - self.target_image)**2, axis=-1))
attention_score = similarity / np.sum(similarity)
attention_scores.append(attention_score)
attention = np.mean(attention_scores, axis=0)
return np.expand_dims(attention, axis=-1)
def multi_scale_perceptual_loss(self, agent_positions):
target_image_resized = self.resize_image((self.target_image + 1) / 2) # Convert to [0, 1] for MobileNet
target_image_preprocessed = preprocess_input(target_image_resized[np.newaxis, ...] * 255) # MobileNet expects [0, 255]
target_features = self.mobilenet.predict(target_image_preprocessed)
losses = []
for agent_position in agent_positions:
agent_image_resized = self.resize_image((agent_position + 1) / 2)
agent_image_preprocessed = preprocess_input(agent_image_resized[np.newaxis, ...] * 255)
agent_features = self.mobilenet.predict(agent_image_preprocessed)
loss = np.mean((target_features - agent_features)**2)
losses.append(1 / (1 + loss))
return np.array(losses)
@spaces.GPU(duration=120)
def update_agents(self, timestep):
noise_level = self.noise_schedule[min(timestep, len(self.noise_schedule) - 1)]
for agent in self.agents:
# Predict noise
predicted_noise = agent.position - self.target_image
# Denoise
denoised = (agent.position - noise_level * predicted_noise) / (1 - noise_level)
# Add scaled noise for next step
agent.position = denoised + np.random.randn(*self.image_shape) * np.sqrt(noise_level)
# Clip values
agent.position = np.clip(agent.position, -1, 1)
@spaces.GPU(duration=120)
def generate_image(self):
self.generated_image = np.mean([agent.position for agent in self.agents], axis=0)
# Normalize to [0, 1] range for display
self.generated_image = (self.generated_image + 1) / 2
self.generated_image = np.clip(self.generated_image, 0, 1)
# Apply sharpening filter
image_pil = Image.fromarray((self.generated_image * 255).astype(np.uint8))
image_pil = image_pil.filter(ImageFilter.SHARPEN)
self.generated_image = np.array(image_pil) / 255.0
@spaces.GPU(duration=120)
def train(self, epochs):
logging.basicConfig(filename='training.log', level=logging.INFO)
for epoch in tqdm(range(epochs), desc="Training Epochs"):
self.update_agents(epoch)
self.generate_image()
mse = np.mean(((self.generated_image * 2 - 1) - self.target_image)**2)
logging.info(f"Epoch {epoch}, MSE: {mse}")
if epoch % 2 == 0: # Display more frequently for faster feedback
print(f"Epoch {epoch}, MSE: {mse}")
self.display_image(self.generated_image, title=f'Epoch {epoch}')
self.current_epoch += 1
def display_image(self, image, title=''):
plt.imshow(image)
plt.title(title)
plt.axis('off')
plt.show()
def display_agent_positions(self, epoch):
fig, ax = plt.subplots()
positions = np.array([agent.position for agent in self.agents])
ax.imshow(self.generated_image, extent=[0, self.image_shape[1], 0, self.image_shape[0]])
ax.scatter(positions[:, :, 0].flatten(), positions[:, :, 1].flatten(), s=1, c='red')
plt.title(f'Agent Positions at Epoch {epoch}')
plt.show()
def save_model(self, filename):
model_state = {
'agents': self.agents,
'generated_image': self.generated_image,
'current_epoch': self.current_epoch
}
np.save(filename, model_state)
def load_model(self, filename):
model_state = np.load(filename, allow_pickle=True).item()
self.agents = model_state['agents']
self.generated_image = model_state['generated_image']
self.current_epoch = model_state['current_epoch']
@spaces.GPU(duration=120)
def generate_new_image(self, num_steps=200): # Reduced number of steps
for agent in self.agents:
agent.position = np.random.randn(*self.image_shape)
for step in tqdm(range(num_steps), desc="Generating Image"):
self.update_agents(num_steps - step - 1) # Reverse order
self.generate_image()
return self.generated_image
def adjust_limbs(self, arm_position, leg_position):
# Logic to adjust arm and leg positions in the target image
# For simplicity, let's assume arm_position and leg_position range from -100 to 100
arm_shift = arm_position / 100.0 * 0.2 # Scale to a reasonable range
leg_shift = leg_position / 100.0 * 0.2 # Scale to a reasonable range
# Translate the positions of the arms and legs in the image
for agent in self.agents:
agent.position[50:100, 50:200, :] += arm_shift # Example adjustment
agent.position[150:200, 50:200, :] += leg_shift # Example adjustment
# Gradio Interface
def train_snn(image_path, num_agents, epochs, arm_position, leg_position, brightness, contrast, color):
snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(128, 128, 3), target_image_path=image_path) # Reduced resolution
# Apply user-specified adjustments to the target image
image = Image.open(image_path)
image = ImageEnhance.Brightness(image).enhance(brightness)
image = ImageEnhance.Contrast(image).enhance(contrast)
image = ImageEnhance.Color(image).enhance(color)
snn.target_image = snn.load_target_image(image_path)
# Adjust limb positions based on slider values
snn.adjust_limbs(arm_position, leg_position)
snn.train(epochs=epochs)
snn.save_model('snn_model.npy')
generated_image = snn.generated_image
return generated_image
def generate_new_image():
snn = SwarmNeuralNetwork(num_agents=1000, image_shape=(128, 128, 3), target_image_path=None) # Reduced number of agents
snn.load_model('snn_model.npy')
new_image = snn.generate_new_image()
return new_image
interface = gr.Interface(
fn=train_snn,
inputs=[
gr.Image(type="filepath", label="Upload Target Image"),
gr.Slider(minimum=100, maximum=1000, value=500, label="Number of Agents"), # Further reduced range for number of agents
gr.Slider(minimum=5, maximum=20, value=10, label="Number of Epochs"), # Further reduced range for number of epochs
gr.Slider(minimum=-100, maximum=100, value=0, label="Arm Position"),
gr.Slider(minimum=-100, maximum=100, value=0, label="Leg Position"),
gr.Slider(minimum=0.5, maximum=2.0, value=1.0, label="Brightness"),
gr.Slider(minimum=0.5, maximum=2.0, value=1.0, label="Contrast"),
gr.Slider(minimum=0.5, maximum=2.0, value=1.0, label="Color Balance")
],
outputs=gr.Image(type="numpy", label="Generated Image"),
title="Swarm Neural Network Image Generation",
description="Upload an image and set the number of agents and epochs to train the Swarm Neural Network to generate a new image. Adjust arm and leg positions, brightness, contrast, and color balance for personalization."
)
interface.launch()