app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
2 |
|
3 |
model_name_or_path = "TheBloke/Unholy-v1-12L-13B-GPTQ"
|
@@ -6,7 +7,9 @@ model_name_or_path = "TheBloke/Unholy-v1-12L-13B-GPTQ"
|
|
6 |
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
7 |
device_map="auto",
|
8 |
trust_remote_code=False,
|
9 |
-
revision="main"
|
|
|
|
|
10 |
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
12 |
|
@@ -41,4 +44,8 @@ pipe = pipeline(
|
|
41 |
repetition_penalty=1.1
|
42 |
)
|
43 |
|
44 |
-
print(pipe(prompt_template)[0]['generated_text'])
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
|
4 |
model_name_or_path = "TheBloke/Unholy-v1-12L-13B-GPTQ"
|
|
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
8 |
device_map="auto",
|
9 |
trust_remote_code=False,
|
10 |
+
revision="main",
|
11 |
+
disable_exllama=True
|
12 |
+
)
|
13 |
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
15 |
|
|
|
44 |
repetition_penalty=1.1
|
45 |
)
|
46 |
|
47 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
48 |
+
|
49 |
+
#t=prompt_template)[0]['generated_text']
|
50 |
+
|
51 |
+
st.json(pipe(prompt_template))
|