c2
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
|
11 |
disable_exllama=True
|
12 |
)
|
13 |
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
15 |
|
16 |
prompt = "Tell me about AI"
|
17 |
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
@@ -26,7 +26,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
|
|
26 |
print("\n\n*** Generate:")
|
27 |
|
28 |
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
29 |
-
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
30 |
print(tokenizer.decode(output[0]))
|
31 |
|
32 |
# Inference can also be done using transformers' pipeline
|
|
|
11 |
disable_exllama=True
|
12 |
)
|
13 |
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True,disable_exllama=True)
|
15 |
|
16 |
prompt = "Tell me about AI"
|
17 |
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
|
|
26 |
print("\n\n*** Generate:")
|
27 |
|
28 |
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
29 |
+
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512,disable_exllama=True)
|
30 |
print(tokenizer.decode(output[0]))
|
31 |
|
32 |
# Inference can also be done using transformers' pipeline
|