Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from llama_cpp import Llama | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from tqdm import tqdm | |
import uvicorn | |
from dotenv import load_dotenv | |
from difflib import SequenceMatcher | |
import re | |
from spaces import GPU | |
import httpx | |
# Cargar variables de entorno | |
load_dotenv() | |
# Inicializar aplicaci贸n FastAPI | |
app = FastAPI() | |
# Diccionario global para almacenar los modelos | |
global_data = { | |
'models': [] | |
} | |
# Configuraci贸n de los modelos (incluyendo los nuevos) | |
model_configs = [ | |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"}, | |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"}, | |
# Otros modelos omitidos por espacio | |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"}, | |
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"}, | |
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"} | |
] | |
# Clase para gestionar modelos | |
class ModelManager: | |
def __init__(self): | |
self.models = [] | |
def load_model(self, model_config): | |
print(f"Cargando modelo: {model_config['name']}...") | |
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']} | |
def load_all_models(self): | |
print("Iniciando carga de modelos...") | |
with ThreadPoolExecutor(max_workers=len(model_configs)) as executor: | |
futures = [executor.submit(self.load_model, config) for config in model_configs] | |
models = [] | |
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"): | |
try: | |
model = future.result() | |
models.append(model) | |
print(f"Modelo cargado exitosamente: {model['name']}") | |
except Exception as e: | |
print(f"Error al cargar el modelo: {e}") | |
print("Todos los modelos han sido cargados.") | |
return models | |
# Instanciar ModelManager y cargar modelos una sola vez | |
model_manager = ModelManager() | |
global_data['models'] = model_manager.load_all_models() | |
# Modelo global para la solicitud de chat | |
class ChatRequest(BaseModel): | |
message: str | |
top_k: int = 50 | |
top_p: float = 0.95 | |
temperature: float = 0.7 | |
# Funci贸n para generar respuestas de chat | |
def generate_chat_response(request, model_data): | |
try: | |
user_input = normalize_input(request.message) | |
llm = model_data['model'] | |
response = llm.create_chat_completion( | |
messages=[{"role": "user", "content": user_input}], | |
top_k=request.top_k, | |
top_p=request.top_p, | |
temperature=request.temperature | |
) | |
reply = response['choices'][0]['message']['content'] | |
return {"response": reply, "literal": user_input, "model_name": model_data['name']} | |
except Exception as e: | |
return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_data['name']} | |
def normalize_input(input_text): | |
return input_text.strip() | |
def remove_duplicates(text): | |
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text) | |
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text) | |
text = text.replace('[/INST]', '') | |
lines = text.split('\n') | |
unique_lines = list(dict.fromkeys(lines)) | |
return '\n'.join(unique_lines).strip() | |
def remove_repetitive_responses(responses): | |
seen = set() | |
unique_responses = [] | |
for response in responses: | |
normalized_response = remove_duplicates(response['response']) | |
if normalized_response not in seen: | |
seen.add(normalized_response) | |
unique_responses.append(response) | |
return unique_responses | |
# Manejo de errores en la inicializaci贸n de modelos (traza mencionada en el error) | |
def handle_initialization_error(allow_token): | |
try: | |
client = httpx.Client() | |
pid = 0 # Variable que simula el proceso actual | |
assert client.allow(allow_token=allow_token, pid=pid) == httpx.codes.OK | |
except AssertionError: | |
raise HTTPException(status_code=500, detail="Error en la inicializaci贸n del cliente Spaces") | |
# Ruta para generar chat en m煤ltiples modelos | |
async def chat(request: ChatRequest): | |
try: | |
# Simulaci贸n del error `AssertionError` durante la inicializaci贸n | |
allow_token = "test_token" | |
handle_initialization_error(allow_token) | |
with ThreadPoolExecutor() as executor: | |
futures = [executor.submit(generate_chat_response, request, model) for model in global_data['models']] | |
responses = [future.result() for future in as_completed(futures)] | |
unique_responses = remove_repetitive_responses(responses) | |
return {"responses": unique_responses} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error procesando la solicitud: {str(e)}") | |
# Uso de template `chat_template.default` | |
chat_template = """ | |
User: {message} | |
Bot: {response} | |
""" | |
# Plantilla de respuesta de chat | |
def render_chat_template(message, response): | |
return chat_template.format(message=message, response=response) | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |