Spaces:
Running
on
A10G
Running
on
A10G
title: LaVie | |
emoji: π | |
colorFrom: pink | |
colorTo: pink | |
sdk: gradio | |
sdk_version: 4.3.0 | |
app_file: base/app.py | |
pinned: false | |
python_version: 3.11.5 | |
# LaVie: High-Quality Video Generation with Cascaded Latent Diffusion Models | |
This repository is the official PyTorch implementation of [LaVie](https://arxiv.org/abs/2309.15103). | |
**LaVie** is a Text-to-Video (T2V) generation framework, and main part of video generation system [Vchitect](http://vchitect.intern-ai.org.cn/). | |
[![arXiv](https://img.shields.io/badge/arXiv-2307.04725-b31b1b.svg)](https://arxiv.org/abs/2309.15103) | |
[![Project Page](https://img.shields.io/badge/Project-Website-green)](https://vchitect.github.io/LaVie-project/) | |
<!-- | |
[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)]() | |
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow)]() | |
--> | |
<img src="lavie.gif" width="800"> | |
## Installation | |
``` | |
conda env create -f environment.yml | |
conda activate lavie | |
``` | |
## Download Pre-Trained models | |
Download [pre-trained models](https://huggingface.co/YaohuiW/LaVie/tree/main), [stable diffusion 1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4/tree/main), [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/tree/main) to `./pretrained_models`. You should be able to see the following: | |
``` | |
βββ pretrained_models | |
β βββ lavie_base.pt | |
β βββ lavie_interpolation.pt | |
β βββ lavie_vsr.pt | |
β βββ stable-diffusion-v1-4 | |
β β βββ ... | |
βββ βββ stable-diffusion-x4-upscaler | |
βββ ... | |
``` | |
## Inference | |
The inference contains **Base T2V**, **Video Interpolation** and **Video Super-Resolution** three steps. We provide several options to generate videos: | |
* **Step1**: 320 x 512 resolution, 16 frames | |
* **Step1+Step2**: 320 x 512 resolution, 61 frames | |
* **Step1+Step3**: 1280 x 2048 resolution, 16 frames | |
* **Step1+Step2+Step3**: 1280 x 2048 resolution, 61 frames | |
Feel free to try different options:) | |
### Step1. Base T2V | |
Run following command to generate videos from base T2V model. | |
``` | |
cd base | |
python pipelines/sample.py --config configs/sample.yaml | |
``` | |
Edit `text_prompt` in `configs/sample.yaml` to change prompt, results will be saved under `./res/base`. | |
### Step2 (optional). Video Interpolation | |
Run following command to conduct video interpolation. | |
``` | |
cd interpolation | |
python sample.py --config configs/sample.yaml | |
``` | |
The default input video path is `./res/base`, results will be saved under `./res/interpolation`. In `configs/sample.yaml`, you could modify default `input_folder` with `YOUR_INPUT_FOLDER` in `configs/sample.yaml`. Input videos should be named as `prompt1.mp4`, `prompt2.mp4`, ... and put under `YOUR_INPUT_FOLDER`. Launching the code will process all the input videos in `input_folder`. | |
### Step3 (optional). Video Super-Resolution | |
Run following command to conduct video super-resolution. | |
``` | |
cd vsr | |
python sample.py --config configs/sample.yaml | |
``` | |
The default input video path is `./res/base` and results will be saved under `./res/vsr`. You could modify default `input_path` with `YOUR_INPUT_FOLDER` in `configs/sample.yaml`. Smiliar to Step2, input videos should be named as `prompt1.mp4`, `prompt2.mp4`, ... and put under `YOUR_INPUT_FOLDER`. Launching the code will process all the input videos in `input_folder`. | |
## BibTex | |
```bibtex | |
@article{wang2023lavie, | |
title={LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models}, | |
author={Wang, Yaohui and Chen, Xinyuan and Ma, Xin and Zhou, Shangchen and Huang, Ziqi and Wang, Yi and Yang, Ceyuan and He, Yinan and Yu, Jiashuo and Yang, Peiqing and others}, | |
journal={arXiv preprint arXiv:2309.15103}, | |
year={2023} | |
} | |
``` | |
## Acknowledgements | |
The code is buit upon [diffusers](https://github.com/huggingface/diffusers) and [Stable Diffusion](https://github.com/CompVis/stable-diffusion), we thank all the contributors for open-sourcing. | |
## License | |
The code is licensed under Apache-2.0, model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form](). |