Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from transformers import AutoImageProcessor, Dinov2Config, Dinov2Model | |
from .base_encoder import BaseVisionTower, ProcessorWrapper | |
class DinoVisionTower(BaseVisionTower): | |
def __init__(self, vision_tower, args, delay_load=False): | |
super(DinoVisionTower, self).__init__(vision_tower, args, delay_load) | |
model_path = "google/siglip-so400m-patch14-384" | |
base_model_name, res, interp = model_path, 378, 576 | |
self._vision_tower_name = vision_tower | |
self.vision_tower_name = base_model_name | |
self._image_size = res | |
self._interp_size = interp | |
self._patch_size = 14 # default patch size | |
if not self.delay_load: | |
self.load_model() | |
else: | |
self.cfg_only = Dinov2Config.from_pretrained(self.vision_tower_name) | |
def load_model(self, device_map=None): | |
self.vision_tower = Dinov2Model.from_pretrained(self.vision_tower_name) | |
"""ValueError: Dinov2Model does not support `device_map='auto'`. To implement support, the model class needs to implement the `_no_split_modules` attribute.""" | |
self.vision_tower._no_split_modules = ["Dinov2SwiGLUFFN"] | |
_image_size = self.vision_tower.config.image_size | |
if self._image_size is None: | |
self._image_size = _image_size | |
# increase shortest edge to prevent edge case crops | |
default_shortest_ratio = 8 / 7 # 224/256 | |
# shortest_edge = int(default_shortest_ratio * self._image_size) | |
shortest_edge = self._image_size | |
processor = AutoImageProcessor.from_pretrained( | |
self.vision_tower_name, | |
crop_size=dict(height=self._image_size, width=self._image_size), | |
size=dict(shortest_edge=shortest_edge), | |
) | |
self.image_processor = processor | |
# Assign the output channels of the projection convolution as the hidden size | |
self._hidden_size = ( | |
self.vision_tower.embeddings.patch_embeddings.projection.out_channels | |
) | |
# Assign the first value of the stride of the projection convolution as the patch size | |
self._patch_size = ( | |
self.vision_tower.embeddings.patch_embeddings.projection.stride[0] | |
) | |
# print(self._hidden_size, self._patch_size) | |
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower) | |
self.is_loaded = True | |
def image_size(self): | |
return self._image_size | |
def feature_select(self, outputs): | |
sequence_output = outputs[ | |
"last_hidden_state" | |
] # batch_size, sequence_length, hidden_size | |
if self.select_feature == "cls_patch": | |
image_features = sequence_output | |
elif self.select_feature == "patch": | |
image_features = sequence_output[:, 1:] | |
elif self.select_feature == "cls": | |
image_features = sequence_output[:, 0] | |
else: | |
raise ValueError(f"Unexpected select feature: {self.select_feature}") | |
return image_features | |
def interpolate(self, image_features): | |
if self._interp_size is None: | |
return image_features | |
b, num_tokens, dim = image_features.shape | |
if num_tokens != self.num_patches: | |
target_h = target_w = int(self._interp_size**0.5) | |
h = w = int(num_tokens**0.5) | |
image_features = image_features.view(b, h, w, dim) | |
image_features = image_features.permute(0, 3, 1, 2).contiguous() | |
image_features = F.interpolate( | |
image_features.to(torch.float32), | |
size=(target_h, target_w), | |
mode="bilinear", | |
align_corners=False, | |
).to(image_features.dtype) | |
# Permute the dimensions back to (b, target_h, target_w, dim) | |
image_features = image_features.permute(0, 2, 3, 1).contiguous() | |
# Flatten the spatial dimensions (target_h, target_w) into a single dimension | |
image_features = image_features.flatten(1, 2) | |
return image_features | |
def _forward(self, images): | |
# logger.warning(f"images shape: {images.shape}") | |
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower): | |
image_forward_outs = self.vision_tower.forward( | |
images.to(device=self.device, dtype=self.dtype) | |
) | |
# logger.warning(f"image_forward_outs shape: {image_forward_outs['last_hidden_state'].shape}") | |
image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
# logger.warning(f"image_features shape: {image_features.shape}") | |
interp_features = self.interpolate(image_features) | |
# logger.warning(f"interp_features shape: {interp_features.shape}") | |
return interp_features | |
def num_patches_per_side(self): | |
return int(self.num_patches**0.5) | |
def num_patches(self): | |
if self._interp_size is None: | |
return (self._image_size // self._patch_size) ** 2 | |
else: | |
return self._interp_size | |