WMa_09 / app.py
Wanli's picture
Upload app.py
2f1a468
import time # to simulate a real time data, time loop
import numpy as np # np mean, np random
import pandas as pd # read csv, df manipulation
import plotly.express as px # interactive charts
import streamlit as st # 🎈 data web app development
st.set_page_config(
page_title="Real-Time Data Science Dashboard",
page_icon="βœ…",
layout="wide",
)
# read csv from a github repo
dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-analysis/master/bank.csv"
# read csv from a URL
@st.experimental_memo
def get_data() -> pd.DataFrame:
return pd.read_csv(dataset_url)
df = get_data()
# dashboard title
st.title("Real-Time / Live Data Science Dashboard")
# top-level filters
job_filter = st.selectbox("Select the Job", pd.unique(df["job"]))
# creating a single-element container
placeholder = st.empty()
# dataframe filter
df = df[df["job"] == job_filter]
# near real-time / live feed simulation
for seconds in range(200):
df["age_new"] = df["age"] * np.random.choice(range(1, 5))
df["balance_new"] = df["balance"] * np.random.choice(range(1, 5))
# creating KPIs
avg_age = np.mean(df["age_new"])
count_married = int(
df[(df["marital"] == "married")]["marital"].count()
+ np.random.choice(range(1, 30))
)
balance = np.mean(df["balance_new"])
with placeholder.container():
# create three columns
kpi1, kpi2, kpi3 = st.columns(3)
# fill in those three columns with respective metrics or KPIs
kpi1.metric(
label="Age ⏳",
value=round(avg_age),
delta=round(avg_age) - 10,
)
kpi2.metric(
label="Married Count πŸ’",
value=int(count_married),
delta=-10 + count_married,
)
kpi3.metric(
label="A/C Balance οΌ„",
value=f"$ {round(balance,2)} ",
delta=-round(balance / count_married) * 100,
)
# create two columns for charts
fig_col1, fig_col2 = st.columns(2)
with fig_col1:
st.markdown("### First Chart")
fig = px.density_heatmap(
data_frame=df, y="age_new", x="marital"
)
st.write(fig)
with fig_col2:
st.markdown("### Second Chart")
fig2 = px.histogram(data_frame=df, x="age_new")
st.write(fig2)
st.markdown("### Detailed Data View")
st.dataframe(df)
time.sleep(1)