|
from fastapi import FastAPI, HTTPException, Request |
|
import uvicorn |
|
import requests |
|
import os |
|
import io |
|
import asyncio |
|
from typing import List, Dict, Any |
|
from tqdm import tqdm |
|
from llama_cpp import Llama |
|
import aiofiles |
|
import time |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
app = FastAPI() |
|
|
|
model_configs = [ |
|
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"}, |
|
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"}, |
|
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"}, |
|
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"}, |
|
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"} |
|
] |
|
|
|
models_dir = "modelos" |
|
models = {} |
|
|
|
class ModelManager: |
|
def __init__(self): |
|
self.model_parts = {} |
|
self.load_lock = asyncio.Lock() |
|
self.index_lock = asyncio.Lock() |
|
self.part_size = 1024 * 1024 |
|
|
|
async def download_model(self, model_config): |
|
model_path = os.path.join(models_dir, model_config['filename']) |
|
if not os.path.exists(model_path): |
|
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}" |
|
print(f"Descargando modelo desde {url}") |
|
try: |
|
start_time = time.time() |
|
response = requests.get(url, stream=True) |
|
response.raise_for_status() |
|
|
|
total_size = int(response.headers.get('content-length', 0)) |
|
with open(model_path, 'wb') as f: |
|
with tqdm(total=total_size, unit='B', unit_scale=True, desc=f"Descargando {model_config['filename']}") as pbar: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
pbar.update(len(chunk)) |
|
end_time = time.time() |
|
download_duration = end_time - start_time |
|
print(f"Descarga completa para {model_config['name']} en {download_duration:.2f} segundos") |
|
except requests.RequestException as e: |
|
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}") |
|
else: |
|
print(f"Modelo {model_config['filename']} ya descargado.") |
|
return model_path |
|
|
|
async def download_all_models(self): |
|
async with self.load_lock: |
|
download_tasks = [self.download_model(config) for config in model_configs] |
|
await asyncio.gather(*download_tasks) |
|
|
|
async def load_all_models(self): |
|
async with self.load_lock: |
|
load_tasks = [self.load_model(config) for config in model_configs] |
|
await asyncio.gather(*load_tasks) |
|
|
|
async def load_model(self, model_config): |
|
model_name = model_config['name'] |
|
if model_name not in models: |
|
try: |
|
model_path = os.path.join(models_dir, model_config['filename']) |
|
start_time = time.time() |
|
print(f"Cargando modelo desde {model_path}") |
|
|
|
llama = Llama(model_path=model_path) |
|
|
|
end_time = time.time() |
|
load_duration = end_time - start_time |
|
if load_duration > 0: |
|
print(f"Modelo {model_name} tardó {load_duration:.2f} segundos en cargar") |
|
else: |
|
print(f"Modelo {model_name} cargado correctamente en {load_duration:.2f} segundos") |
|
|
|
tokenizer = llama.tokenizer |
|
models[model_name] = { |
|
'model': llama, |
|
'tokenizer': tokenizer, |
|
} |
|
except Exception as e: |
|
print(f"Error al cargar el modelo: {e}") |
|
|
|
async def generate_response(self, user_input, model_name=None, top_k=50, top_p=0.95, temperature=0.8): |
|
results = [] |
|
if model_name: |
|
model_data = models.get(model_name) |
|
if not model_data: |
|
return {"model_name": model_name, "error": "Modelo no encontrado"} |
|
try: |
|
tokenizer = model_data['tokenizer'] |
|
input_ids = tokenizer(user_input).input_ids |
|
outputs = model_data['model'].generate( |
|
[input_ids], |
|
top_k=top_k, |
|
top_p=top_p, |
|
temperature=temperature |
|
) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
parts = [] |
|
while len(generated_text) > 1000: |
|
part = generated_text[:1000] |
|
parts.append(part) |
|
generated_text = generated_text[1000:] |
|
parts.append(generated_text) |
|
results.append({ |
|
'model_name': model_name, |
|
'generated_text': generated_text, |
|
'generated_text_parts': parts |
|
}) |
|
except Exception as e: |
|
return {'model_name': model_name, 'error': str(e)} |
|
else: |
|
for model_name, model_data in models.items(): |
|
try: |
|
tokenizer = model_data['tokenizer'] |
|
input_ids = tokenizer(user_input).input_ids |
|
outputs = model_data['model'].generate( |
|
[input_ids], |
|
top_k=top_k, |
|
top_p=top_p, |
|
temperature=temperature |
|
) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
parts = [] |
|
while len(generated_text) > 1000: |
|
part = generated_text[:1000] |
|
parts.append(part) |
|
generated_text = generated_text[1000:] |
|
parts.append(generated_text) |
|
results.append({ |
|
'model_name': model_name, |
|
'generated_text': generated_text, |
|
'generated_text_parts': parts |
|
}) |
|
except Exception as e: |
|
results.append({'model_name': model_name, 'error': str(e)}) |
|
|
|
if len(results) > 1: |
|
best_response = self.choose_best_response(user_input, results) |
|
elif len(results) == 1: |
|
best_response = results[0] |
|
else: |
|
return {"model_name": "Error", "error": "No se pudo generar una respuesta con ningún modelo."} |
|
|
|
return best_response |
|
|
|
def choose_best_response(self, user_input, responses): |
|
valid_responses = [r for r in responses if 'error' not in r] |
|
|
|
tfidf = TfidfVectorizer() |
|
response_texts = [r['generated_text'] for r in valid_responses] |
|
tfidf_matrix = tfidf.fit_transform([user_input] + response_texts) |
|
similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:]) |
|
|
|
best_index = similarities.argmax() |
|
best_response = valid_responses[best_index] |
|
|
|
return best_response |
|
|
|
@app.post("/generate/") |
|
async def generate(request: Request): |
|
data = await request.json() |
|
user_input = data.get('input', '') |
|
model_name = data.get('model') |
|
top_k = data.get('top_k', 50) |
|
top_p = data.get('top_p', 0.95) |
|
temperature = data.get('temperature', 0.8) |
|
if not user_input: |
|
raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.") |
|
|
|
try: |
|
response = await model_manager.generate_response(user_input, model_name, top_k, top_p, temperature) |
|
return {"response": response} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.get("/models") |
|
async def get_available_models(): |
|
return {"models": [config['name'] for config in model_configs]} |
|
|
|
async def load_models_on_startup(): |
|
global model_manager |
|
model_manager = ModelManager() |
|
await model_manager.download_all_models() |
|
await model_manager.load_all_models() |
|
|
|
@app.on_event("startup") |
|
async def startup_event(): |
|
await load_models_on_startup() |
|
print("Modelos cargados. API lista.") |
|
|
|
if __name__ == "__main__": |
|
if not os.path.exists(models_dir): |
|
os.makedirs(models_dir) |
|
|
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|
|
html_code = """ |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>Chatbot</title> |
|
<style> |
|
body { |
|
display: flex; |
|
justify-content: center; |
|
align-items: center; |
|
height: 100vh; |
|
margin: 0; |
|
font-family: sans-serif; |
|
} |
|
|
|
.container { |
|
border: 1px solid #ccc; |
|
border-radius: 5px; |
|
width: 400px; |
|
height: 500px; |
|
overflow: hidden; |
|
} |
|
|
|
.chat-log { |
|
padding: 10px; |
|
height: 400px; |
|
overflow-y: scroll; |
|
} |
|
|
|
.chat-message { |
|
margin-bottom: 10px; |
|
padding: 8px; |
|
border-radius: 5px; |
|
} |
|
|
|
.user-message { |
|
background-color: #eee; |
|
} |
|
|
|
.bot-message { |
|
background-color: #ccf; |
|
} |
|
|
|
.input-area { |
|
display: flex; |
|
padding: 10px; |
|
} |
|
|
|
#user-input { |
|
flex: 1; |
|
padding: 8px; |
|
border: 1px solid #ccc; |
|
border-radius: 5px; |
|
} |
|
|
|
#send-button { |
|
padding: 8px 15px; |
|
background-color: #4CAF50; |
|
color: white; |
|
border: none; |
|
border-radius: 5px; |
|
cursor: pointer; |
|
margin-left: 10px; |
|
} |
|
|
|
#model-select { |
|
width: 100%; |
|
padding: 8px; |
|
border: 1px solid #ccc; |
|
border-radius: 5px; |
|
margin-bottom: 10px; |
|
} |
|
</style> |
|
</head> |
|
<body> |
|
<div class="container"> |
|
<div class="chat-log" id="chat-log"> |
|
</div> |
|
<div class="input-area"> |
|
<input type="text" id="user-input" placeholder="Escribe tu mensaje..."> |
|
<button id="send-button">Enviar</button> |
|
</div> |
|
<select id="model-select"> |
|
<option value="">Todos los modelos</option> |
|
</select> |
|
</div> |
|
|
|
<script> |
|
const chatLog = document.getElementById('chat-log'); |
|
const userInput = document.getElementById('user-input'); |
|
const sendButton = document.getElementById('send-button'); |
|
const modelSelect = document.getElementById('model-select'); |
|
let currentConversationId = null; |
|
|
|
async function startNewConversation() { |
|
} |
|
|
|
startNewConversation(); |
|
|
|
async function getAvailableModels() { |
|
const response = await fetch('/models'); |
|
const data = await response.json(); |
|
return data.models; |
|
} |
|
|
|
async function displayAvailableModels() { |
|
const models = await getAvailableModels(); |
|
models.forEach(model => { |
|
const option = document.createElement('option'); |
|
option.value = model; |
|
option.text = model; |
|
modelSelect.add(option); |
|
}); |
|
} |
|
|
|
displayAvailableModels(); |
|
|
|
sendButton.addEventListener('click', async () => { |
|
const userMessage = userInput.value; |
|
userInput.value = ''; |
|
const selectedModel = modelSelect.value; |
|
|
|
appendMessage('user', userMessage); |
|
|
|
const response = await fetch('/generate/', { |
|
method: 'POST', |
|
headers: { |
|
'Content-Type': 'application/json' |
|
}, |
|
body: JSON.stringify({ input: userMessage, model: selectedModel }) |
|
}); |
|
|
|
const data = await response.json(); |
|
if (data.response.error) { |
|
appendMessage('bot', `Error del modelo ${data.response.model_name}: ${data.response.error}`); |
|
} else { |
|
data.response.generated_text_parts.forEach(part => { |
|
appendMessage('bot', part); |
|
}); |
|
} |
|
}); |
|
|
|
function appendMessage(role, message) { |
|
const messageElement = document.createElement('div'); |
|
messageElement.classList.add('chat-message', `${role}-message`); |
|
messageElement.textContent = message; |
|
chatLog.appendChild(messageElement); |
|
chatLog.scrollTop = chatLog.scrollHeight; |
|
} |
|
</script> |
|
</body> |
|
</html> |
|
""" |