File size: 12,047 Bytes
27d04f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# -*- coding: utf-8 -*-
"""
@File    :   visualizer.py
@Time    :   2022/04/05 11:39:33
@Author  :   Shilong Liu 
@Contact :   [email protected]
"""

import datetime
import os

import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib import transforms
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
from pycocotools import mask as maskUtils


def renorm(
    img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
) -> torch.FloatTensor:
    # img: tensor(3,H,W) or tensor(B,3,H,W)
    # return: same as img
    assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
    if img.dim() == 3:
        assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
            img.size(0),
            str(img.size()),
        )
        img_perm = img.permute(1, 2, 0)
        mean = torch.Tensor(mean)
        std = torch.Tensor(std)
        img_res = img_perm * std + mean
        return img_res.permute(2, 0, 1)
    else:  # img.dim() == 4
        assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
            img.size(1),
            str(img.size()),
        )
        img_perm = img.permute(0, 2, 3, 1)
        mean = torch.Tensor(mean)
        std = torch.Tensor(std)
        img_res = img_perm * std + mean
        return img_res.permute(0, 3, 1, 2)


class ColorMap:
    def __init__(self, basergb=[255, 255, 0]):
        self.basergb = np.array(basergb)

    def __call__(self, attnmap):
        # attnmap: h, w. np.uint8.
        # return: h, w, 4. np.uint8.
        assert attnmap.dtype == np.uint8
        h, w = attnmap.shape
        res = self.basergb.copy()
        res = res[None][None].repeat(h, 0).repeat(w, 1)  # h, w, 3
        attn1 = attnmap.copy()[..., None]  # h, w, 1
        res = np.concatenate((res, attn1), axis=-1).astype(np.uint8)
        return res


def rainbow_text(x, y, ls, lc, **kw):
    """
    Take a list of strings ``ls`` and colors ``lc`` and place them next to each
    other, with text ls[i] being shown in color lc[i].

    This example shows how to do both vertical and horizontal text, and will
    pass all keyword arguments to plt.text, so you can set the font size,
    family, etc.
    """
    t = plt.gca().transData
    fig = plt.gcf()
    plt.show()

    # horizontal version
    for s, c in zip(ls, lc):
        text = plt.text(x, y, " " + s + " ", color=c, transform=t, **kw)
        text.draw(fig.canvas.get_renderer())
        ex = text.get_window_extent()
        t = transforms.offset_copy(text._transform, x=ex.width, units="dots")

    # #vertical version
    # for s,c in zip(ls,lc):
    #     text = plt.text(x,y," "+s+" ",color=c, transform=t,
    #             rotation=90,va='bottom',ha='center',**kw)
    #     text.draw(fig.canvas.get_renderer())
    #     ex = text.get_window_extent()
    #     t = transforms.offset_copy(text._transform, y=ex.height, units='dots')


class COCOVisualizer:
    def __init__(self, coco=None, tokenlizer=None) -> None:
        self.coco = coco

    def visualize(self, img, tgt, caption=None, dpi=180, savedir="vis"):
        """
        img: tensor(3, H, W)
        tgt: make sure they are all on cpu.
            must have items: 'image_id', 'boxes', 'size'
        """
        plt.figure(dpi=dpi)
        plt.rcParams["font.size"] = "5"
        ax = plt.gca()
        img = renorm(img).permute(1, 2, 0)
        # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
        #     import ipdb; ipdb.set_trace()
        ax.imshow(img)

        self.addtgt(tgt)

        if tgt is None:
            image_id = 0
        elif "image_id" not in tgt:
            image_id = 0
        else:
            image_id = tgt["image_id"]

        if caption is None:
            savename = "{}/{}-{}.png".format(
                savedir, int(image_id), str(datetime.datetime.now()).replace(" ", "-")
            )
        else:
            savename = "{}/{}-{}-{}.png".format(
                savedir, caption, int(image_id), str(datetime.datetime.now()).replace(" ", "-")
            )
        print("savename: {}".format(savename))
        os.makedirs(os.path.dirname(savename), exist_ok=True)
        plt.savefig(savename)
        plt.close()

    def addtgt(self, tgt):
        """ """
        if tgt is None or not "boxes" in tgt:
            ax = plt.gca()

            if "caption" in tgt:
                ax.set_title(tgt["caption"], wrap=True)

            ax.set_axis_off()
            return

        ax = plt.gca()
        H, W = tgt["size"]
        numbox = tgt["boxes"].shape[0]

        color = []
        polygons = []
        boxes = []
        for box in tgt["boxes"].cpu():
            unnormbbox = box * torch.Tensor([W, H, W, H])
            unnormbbox[:2] -= unnormbbox[2:] / 2
            [bbox_x, bbox_y, bbox_w, bbox_h] = unnormbbox.tolist()
            boxes.append([bbox_x, bbox_y, bbox_w, bbox_h])
            poly = [
                [bbox_x, bbox_y],
                [bbox_x, bbox_y + bbox_h],
                [bbox_x + bbox_w, bbox_y + bbox_h],
                [bbox_x + bbox_w, bbox_y],
            ]
            np_poly = np.array(poly).reshape((4, 2))
            polygons.append(Polygon(np_poly))
            c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
            color.append(c)

        p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.1)
        ax.add_collection(p)
        p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
        ax.add_collection(p)

        if "strings_positive" in tgt and len(tgt["strings_positive"]) > 0:
            assert (
                len(tgt["strings_positive"]) == numbox
            ), f"{len(tgt['strings_positive'])} = {numbox}, "
            for idx, strlist in enumerate(tgt["strings_positive"]):
                cate_id = int(tgt["labels"][idx])
                _string = str(cate_id) + ":" + " ".join(strlist)
                bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx]
                # ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1})
                ax.text(
                    bbox_x,
                    bbox_y,
                    _string,
                    color="black",
                    bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1},
                )

        if "box_label" in tgt:
            assert len(tgt["box_label"]) == numbox, f"{len(tgt['box_label'])} = {numbox}, "
            for idx, bl in enumerate(tgt["box_label"]):
                _string = str(bl)
                bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx]
                # ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1})
                ax.text(
                    bbox_x,
                    bbox_y,
                    _string,
                    color="black",
                    bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1},
                )

        if "caption" in tgt:
            ax.set_title(tgt["caption"], wrap=True)
            # plt.figure()
            # rainbow_text(0.0,0.0,"all unicorns poop rainbows ! ! !".split(),
            #         ['red', 'orange', 'brown', 'green', 'blue', 'purple', 'black'])

        if "attn" in tgt:
            # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
            #     import ipdb; ipdb.set_trace()
            if isinstance(tgt["attn"], tuple):
                tgt["attn"] = [tgt["attn"]]
            for item in tgt["attn"]:
                attn_map, basergb = item
                attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min() + 1e-3)
                attn_map = (attn_map * 255).astype(np.uint8)
                cm = ColorMap(basergb)
                heatmap = cm(attn_map)
                ax.imshow(heatmap)
        ax.set_axis_off()

    def showAnns(self, anns, draw_bbox=False):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if "segmentation" in anns[0] or "keypoints" in anns[0]:
            datasetType = "instances"
        elif "caption" in anns[0]:
            datasetType = "captions"
        else:
            raise Exception("datasetType not supported")
        if datasetType == "instances":
            ax = plt.gca()
            ax.set_autoscale_on(False)
            polygons = []
            color = []
            for ann in anns:
                c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
                if "segmentation" in ann:
                    if type(ann["segmentation"]) == list:
                        # polygon
                        for seg in ann["segmentation"]:
                            poly = np.array(seg).reshape((int(len(seg) / 2), 2))
                            polygons.append(Polygon(poly))
                            color.append(c)
                    else:
                        # mask
                        t = self.imgs[ann["image_id"]]
                        if type(ann["segmentation"]["counts"]) == list:
                            rle = maskUtils.frPyObjects(
                                [ann["segmentation"]], t["height"], t["width"]
                            )
                        else:
                            rle = [ann["segmentation"]]
                        m = maskUtils.decode(rle)
                        img = np.ones((m.shape[0], m.shape[1], 3))
                        if ann["iscrowd"] == 1:
                            color_mask = np.array([2.0, 166.0, 101.0]) / 255
                        if ann["iscrowd"] == 0:
                            color_mask = np.random.random((1, 3)).tolist()[0]
                        for i in range(3):
                            img[:, :, i] = color_mask[i]
                        ax.imshow(np.dstack((img, m * 0.5)))
                if "keypoints" in ann and type(ann["keypoints"]) == list:
                    # turn skeleton into zero-based index
                    sks = np.array(self.loadCats(ann["category_id"])[0]["skeleton"]) - 1
                    kp = np.array(ann["keypoints"])
                    x = kp[0::3]
                    y = kp[1::3]
                    v = kp[2::3]
                    for sk in sks:
                        if np.all(v[sk] > 0):
                            plt.plot(x[sk], y[sk], linewidth=3, color=c)
                    plt.plot(
                        x[v > 0],
                        y[v > 0],
                        "o",
                        markersize=8,
                        markerfacecolor=c,
                        markeredgecolor="k",
                        markeredgewidth=2,
                    )
                    plt.plot(
                        x[v > 1],
                        y[v > 1],
                        "o",
                        markersize=8,
                        markerfacecolor=c,
                        markeredgecolor=c,
                        markeredgewidth=2,
                    )

                if draw_bbox:
                    [bbox_x, bbox_y, bbox_w, bbox_h] = ann["bbox"]
                    poly = [
                        [bbox_x, bbox_y],
                        [bbox_x, bbox_y + bbox_h],
                        [bbox_x + bbox_w, bbox_y + bbox_h],
                        [bbox_x + bbox_w, bbox_y],
                    ]
                    np_poly = np.array(poly).reshape((4, 2))
                    polygons.append(Polygon(np_poly))
                    color.append(c)

            # p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4)
            # ax.add_collection(p)
            p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
            ax.add_collection(p)
        elif datasetType == "captions":
            for ann in anns:
                print(ann["caption"])