Spaces:
Runtime error
Runtime error
import os | |
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" | |
import cv2 | |
import mediapipe as mp | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from kornia.geometry.transform import get_affine_matrix2d, warp_affine | |
from PIL import Image | |
from rembg import remove | |
from rembg.session_factory import new_session | |
from torchvision import transforms | |
from lib.pymafx.core import constants | |
def transform_to_tensor(res, mean=None, std=None, is_tensor=False): | |
all_ops = [] | |
if res is not None: | |
all_ops.append(transforms.Resize(size=res)) | |
if not is_tensor: | |
all_ops.append(transforms.ToTensor()) | |
if mean is not None and std is not None: | |
all_ops.append(transforms.Normalize(mean=mean, std=std)) | |
return transforms.Compose(all_ops) | |
def get_affine_matrix_wh(w1, h1, w2, h2): | |
transl = torch.tensor([(w2 - w1) / 2.0, (h2 - h1) / 2.0]).unsqueeze(0) | |
center = torch.tensor([w1 / 2.0, h1 / 2.0]).unsqueeze(0) | |
scale = torch.min(torch.tensor([w2 / w1, h2 / h1])).repeat(2).unsqueeze(0) | |
M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.])) | |
return M | |
def get_affine_matrix_box(boxes, w2, h2): | |
# boxes [left, top, right, bottom] | |
width = boxes[:, 2] - boxes[:, 0] #(N,) | |
height = boxes[:, 3] - boxes[:, 1] #(N,) | |
center = torch.tensor([(boxes[:, 0] + boxes[:, 2]) / 2.0, | |
(boxes[:, 1] + boxes[:, 3]) / 2.0]).T #(N,2) | |
scale = torch.min(torch.tensor([w2 / width, h2 / height]), | |
dim=0)[0].unsqueeze(1).repeat(1, 2) * 0.9 #(N,2) | |
transl = torch.cat([w2 / 2.0 - center[:, 0:1], h2 / 2.0 - center[:, 1:2]], dim=1) #(N,2) | |
M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([ | |
0., | |
] * transl.shape[0])) | |
return M | |
def load_img(img_file): | |
if img_file.endswith("exr"): | |
img = cv2.imread(img_file, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) | |
else: | |
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED) | |
# considering non 8-bit image | |
if img.dtype != np.uint8: | |
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U) | |
if len(img.shape) == 2: | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
if not img_file.endswith("png"): | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
else: | |
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR) | |
return torch.tensor(img).permute(2, 0, 1).unsqueeze(0).float(), img.shape[:2] | |
def get_keypoints(image): | |
def collect_xyv(x, body=True): | |
lmk = x.landmark | |
all_lmks = [] | |
for i in range(len(lmk)): | |
visibility = lmk[i].visibility if body else 1.0 | |
all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility])) | |
return torch.stack(all_lmks).view(-1, 4) | |
mp_holistic = mp.solutions.holistic | |
with mp_holistic.Holistic( | |
static_image_mode=True, | |
model_complexity=2, | |
) as holistic: | |
results = holistic.process(image) | |
fake_kps = torch.zeros(33, 4) | |
result = {} | |
result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps | |
result["lhand"] = collect_xyv( | |
results.left_hand_landmarks, False | |
) if results.left_hand_landmarks else fake_kps | |
result["rhand"] = collect_xyv( | |
results.right_hand_landmarks, False | |
) if results.right_hand_landmarks else fake_kps | |
result["face"] = collect_xyv( | |
results.face_landmarks, False | |
) if results.face_landmarks else fake_kps | |
return result | |
def get_pymafx(image, landmarks): | |
# image [3,512,512] | |
item = { | |
'img_body': F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', | |
align_corners=True)[0] | |
} | |
for part in ['lhand', 'rhand', 'face']: | |
kp2d = landmarks[part] | |
kp2d_valid = kp2d[kp2d[:, 3] > 0.] | |
if len(kp2d_valid) > 0: | |
bbox = [ | |
min(kp2d_valid[:, 0]), | |
min(kp2d_valid[:, 1]), | |
max(kp2d_valid[:, 0]), | |
max(kp2d_valid[:, 1]) | |
] | |
center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.] | |
scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2 | |
# handle invalid part keypoints | |
if len(kp2d_valid) < 1 or scale_part < 0.01: | |
center_part = [0, 0] | |
scale_part = 0.5 | |
kp2d[:, 3] = 0 | |
center_part = torch.tensor(center_part).float() | |
theta_part = torch.zeros(1, 2, 3) | |
theta_part[:, 0, 0] = scale_part | |
theta_part[:, 1, 1] = scale_part | |
theta_part[:, :, -1] = center_part | |
grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False) | |
img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float() | |
item[f'img_{part}'] = img_part | |
theta_i_inv = torch.zeros_like(theta_part) | |
theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0] | |
theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1] | |
theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1) | |
item[f'{part}_theta_inv'] = theta_i_inv[0] | |
return item | |
def remove_floats(mask): | |
# 1. find all the contours | |
# 2. fillPoly "True" for the largest one | |
# 3. fillPoly "False" for its childrens | |
new_mask = np.zeros(mask.shape) | |
cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) | |
cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True) | |
body_cnt = cnts[cnt_index[0]] | |
childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0] | |
childs_cnt = [cnts[idx] for idx in childs_cnt_idx] | |
cv2.fillPoly(new_mask, [body_cnt], 1) | |
cv2.fillPoly(new_mask, childs_cnt, 0) | |
return new_mask | |
def process_image(img_file, hps_type, single, input_res, detector): | |
img_raw, (in_height, in_width) = load_img(img_file) | |
tgt_res = input_res * 2 | |
M_square = get_affine_matrix_wh(in_width, in_height, tgt_res, tgt_res) | |
img_square = warp_affine( | |
img_raw, | |
M_square[:, :2], (tgt_res, ) * 2, | |
mode='bilinear', | |
padding_mode='zeros', | |
align_corners=True | |
) | |
# detection for bbox | |
predictions = detector(img_square / 255.)[0] | |
if single: | |
top_score = max(predictions["scores"][predictions["labels"] == 1]) | |
human_ids = torch.where(predictions["scores"] == top_score)[0] | |
else: | |
human_ids = torch.logical_and(predictions["labels"] == 1, | |
predictions["scores"] > 0.9).nonzero().squeeze(1) | |
boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy() | |
masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy() | |
M_crop = get_affine_matrix_box(boxes, input_res, input_res) | |
img_icon_lst = [] | |
img_crop_lst = [] | |
img_hps_lst = [] | |
img_mask_lst = [] | |
landmark_lst = [] | |
hands_visibility_lst = [] | |
img_pymafx_lst = [] | |
uncrop_param = { | |
"ori_shape": [in_height, in_width], "box_shape": [input_res, input_res], "square_shape": | |
[tgt_res, tgt_res], "M_square": M_square, "M_crop": M_crop | |
} | |
for idx in range(len(boxes)): | |
# mask out the pixels of others | |
if len(masks) > 1: | |
mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0) | |
else: | |
mask_detection = masks[0] * 0. | |
img_square_rgba = torch.cat([ | |
img_square.squeeze(0).permute(1, 2, 0), | |
torch.tensor(mask_detection < 0.4) * 255 | |
], | |
dim=2) | |
img_crop = warp_affine( | |
img_square_rgba.unsqueeze(0).permute(0, 3, 1, 2), | |
M_crop[idx:idx + 1, :2], (input_res, ) * 2, | |
mode='bilinear', | |
padding_mode='zeros', | |
align_corners=True | |
).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8) | |
# get accurate person segmentation mask | |
img_rembg = remove(img_crop, post_process_mask=True, session=new_session("u2net")) | |
img_mask = remove_floats(img_rembg[:, :, [3]]) | |
mean_icon = std_icon = (0.5, 0.5, 0.5) | |
img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8) | |
img_icon = transform_to_tensor(512, mean_icon, std_icon)( | |
Image.fromarray(img_np) | |
) * torch.tensor(img_mask).permute(2, 0, 1) | |
img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN, | |
constants.IMG_NORM_STD)(Image.fromarray(img_np)) | |
landmarks = get_keypoints(img_np) | |
# get hands visibility | |
hands_visibility = [True, True] | |
if landmarks['lhand'][:, -1].mean() == 0.: | |
hands_visibility[0] = False | |
if landmarks['rhand'][:, -1].mean() == 0.: | |
hands_visibility[1] = False | |
hands_visibility_lst.append(hands_visibility) | |
if hps_type == 'pymafx': | |
img_pymafx_lst.append( | |
get_pymafx( | |
transform_to_tensor(512, constants.IMG_NORM_MEAN, | |
constants.IMG_NORM_STD)(Image.fromarray(img_np)), landmarks | |
) | |
) | |
img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0) | |
img_icon_lst.append(img_icon) | |
img_hps_lst.append(img_hps) | |
img_mask_lst.append(torch.tensor(img_mask[..., 0])) | |
landmark_lst.append(landmarks['body']) | |
# required image tensors / arrays | |
# img_icon (tensor): (-1, 1), [3,512,512] | |
# img_hps (tensor): (-2.11, 2.44), [3,224,224] | |
# img_np (array): (0, 255), [512,512,3] | |
# img_rembg (array): (0, 255), [512,512,4] | |
# img_mask (array): (0, 1), [512,512,1] | |
# img_crop (array): (0, 255), [512,512,4] | |
return_dict = { | |
"img_icon": torch.stack(img_icon_lst).float(), #[N, 3, res, res] | |
"img_crop": torch.stack(img_crop_lst).float(), #[N, 4, res, res] | |
"img_hps": torch.stack(img_hps_lst).float(), #[N, 3, res, res] | |
"img_raw": img_raw, #[1, 3, H, W] | |
"img_mask": torch.stack(img_mask_lst).float(), #[N, res, res] | |
"uncrop_param": uncrop_param, | |
"landmark": torch.stack(landmark_lst), #[N, 33, 4] | |
"hands_visibility": hands_visibility_lst, | |
} | |
img_pymafx = {} | |
if len(img_pymafx_lst) > 0: | |
for idx in range(len(img_pymafx_lst)): | |
for key in img_pymafx_lst[idx].keys(): | |
if key not in img_pymafx.keys(): | |
img_pymafx[key] = [img_pymafx_lst[idx][key]] | |
else: | |
img_pymafx[key] += [img_pymafx_lst[idx][key]] | |
for key in img_pymafx.keys(): | |
img_pymafx[key] = torch.stack(img_pymafx[key]).float() | |
return_dict.update({"img_pymafx": img_pymafx}) | |
return return_dict | |
def blend_rgb_norm(norms, data): | |
# norms [N, 3, res, res] | |
masks = (norms.sum(dim=1) != norms[0, :, 0, 0].sum()).float().unsqueeze(1) | |
norm_mask = F.interpolate( | |
torch.cat([norms, masks], dim=1).detach(), | |
size=data["uncrop_param"]["box_shape"], | |
mode="bilinear", | |
align_corners=False | |
) | |
final = data["img_raw"].type_as(norm_mask) | |
for idx in range(len(norms)): | |
norm_pred = (norm_mask[idx:idx + 1, :3, :, :] + 1.0) * 255.0 / 2.0 | |
mask_pred = norm_mask[idx:idx + 1, 3:4, :, :].repeat(1, 3, 1, 1) | |
norm_ori = unwrap(norm_pred, data["uncrop_param"], idx) | |
mask_ori = unwrap(mask_pred, data["uncrop_param"], idx) | |
final = final * (1.0 - mask_ori) + norm_ori * mask_ori | |
return final.detach().cpu() | |
def unwrap(image, uncrop_param, idx): | |
device = image.device | |
img_square = warp_affine( | |
image, | |
torch.inverse(uncrop_param["M_crop"])[idx:idx + 1, :2].to(device), | |
uncrop_param["square_shape"], | |
mode='bilinear', | |
padding_mode='zeros', | |
align_corners=True | |
) | |
img_ori = warp_affine( | |
img_square, | |
torch.inverse(uncrop_param["M_square"])[:, :2].to(device), | |
uncrop_param["ori_shape"], | |
mode='bilinear', | |
padding_mode='zeros', | |
align_corners=True | |
) | |
return img_ori | |