File size: 10,498 Bytes
d170d9a
 
 
 
 
 
 
 
 
 
adeb36a
d170d9a
 
 
 
 
 
c9fb4a6
d170d9a
fca8538
d170d9a
 
 
 
 
9549091
d170d9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72d27db
d170d9a
 
 
 
 
5d5b9ef
d170d9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72d27db
d170d9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d5b9ef
d170d9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d5b9ef
d170d9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d5b9ef
d170d9a
 
 
 
 
 
6c46428
d170d9a
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#!/usr/bin/env python
# coding: utf-8

# In[2]:


import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
#from scipy import stats
from ast import literal_eval
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import wordnet
#from surprise import Reader, Dataset, SVD
import warnings; warnings.simplefilter('ignore')
#import surprise


# In[3]:


path = '.'


# In[4]:


md = pd.read_csv(path+'/movies_metadata.csv')
md.head(2)


# <b> Simple rec system <b>
# 

# In[5]:


md['genres'] = md['genres'].fillna('[]').apply(literal_eval).apply(lambda x: [i['name'] for i in x] if isinstance(x, list) else [])
# fillna replaces NaN values with '[]'
# Get just the genres


# Weighted Rating (WR) =  (v/(v+m)*R)+(m/(v+m).C)
# 
# where,
# 
# [1] v is the number of votes for the movie <br>
# [2] m is the minimum votes required to be listed in the chart <br>
# [3] R is the average rating of the movie <br>
# [4] C is the mean vote across the whole report <br>

# In[6]:


vote_counts = md[md['vote_count'].notnull()]['vote_count'].astype(int)
vote_average = md[md['vote_average'].notnull()]['vote_average'].astype(int)

C = np.mean(vote_average)
m = vote_counts.quantile(0.95)

print('The average rating for these movies is: ',C)
print('The minimum votes required to be listed in the chart: ',m)


# In[7]:


# Keeping the year from the date
md['year'] = pd.to_datetime(md['release_date'], errors='coerce').apply(lambda x: str(x).split('-')[0] if x != np.nan else np.nan)


# In[8]:


md['popularity']


# In[9]:


qualified = md[(md['vote_count'] >= m) & (md['vote_count'].notnull()) & (md['vote_average'].notnull())][['title', 'year', 'vote_count', 'vote_average', 'popularity', 'genres']]


# In[10]:


qualified['vote_count'] = qualified['vote_count'].astype(int)
qualified['vote_average'] = qualified['vote_average'].astype(int)


# In[11]:


def weighted_rating(x):
    v = x['vote_count']
    R = x['vote_average']
    return (v/(v+m) * R) + (m/(m+v) * C)


# In[12]:


qualified['wr'] = qualified.apply(weighted_rating, axis=1)
qualified = qualified.sort_values('wr',ascending = False).head(250)


# In[13]:


s = md.apply(lambda x: pd.Series(x['genres']),axis=1).stack().reset_index(level=1, drop=True)
s.name = 'genre'
gen_md = md.drop('genres', axis=1).join(s)


# In[14]:


def build_chart(genre, percentile=0.85):
    
    df = gen_md[gen_md['genre'] == genre] # Getting gen_md for specific genres
    vote_counts = df[df['vote_count'].notnull()]['vote_count'].astype('int')
    vote_averages = df[df['vote_average'].notnull()]['vote_average'].astype('int')
    C = vote_averages.mean()
    m = vote_counts.quantile(percentile)
    
    
    qualified = df[(df['vote_count'] >= m) & (df['vote_count'].notnull()) & (df['vote_average'].notnull())][['title', 'year', 'vote_count', 'vote_average', 'popularity']]
    qualified['vote_count'] = qualified['vote_count'].astype('int')
    qualified['vote_average'] = qualified['vote_average'].astype('int')
    
    qualified['wr'] = qualified.apply(lambda x: (x['vote_count']/(x['vote_count']+m) * x['vote_average']) + (m/(m+x['vote_count']) * C), axis=1)
    qualified = qualified.sort_values('wr', ascending=False).head(250)
    
    return qualified


# In[15]:




# <b> Content Based Recommender/ Filtering <b>
# 
# In this section we personalize the movie recommendations, Content Based Recommenders based on:
# 
# Movie Overviews and Taglines <br>
# Movie Cast, Crew, Keywords and Genre
#     

# In[16]:


links = pd.read_csv(path+'/links_small.csv')
links = links[links['tmdbId'].notnull()]['tmdbId'].astype(int)


# In[17]:


md = md.drop([19730, 29503, 35587])


# In[18]:


md['id'] = md['id'].astype('int')


# In[19]:


# Getting the movies that their IDs exist in "links"
smd = md[md['id'].isin(links)]
smd.shape


# In[20]:


smd['tagline'] = smd['tagline'].fillna('')
smd['description'] = smd['overview'] + smd['tagline']
smd['description'] = smd['description'].fillna('')


# <b><font size="3"> This is where things gets exciting!!!!!!!!!<font> <b>
# 
# [1] Convert a collection of raw documents to a matrix of TF-IDF features --  TF-IDF: term frequency–inverse document frequency <br>
# <b>how many times a word appears in a document, and the inverse document frequency of the word across a set of documents?<b> <br>
# 
# [2] ngram_range: All values of n such that min_n <= n <= max_n will be used. For example an ngram_range of (1, 1) means only unigrams, (1, 2) means unigrams and bigrams,  So we're using both unigrams and bigrams <br>
# 
# [3] A 1-gram (or unigram) is a one-word sequence. ... A 2-gram (or bigram) is a two-word sequence of words, like “I love”, “love reading”, or “Analytics Vidhya”. And a 3-gram (or trigram) is a three-word sequence of words like “I love reading”

# In[21]:


tf = TfidfVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, stop_words='english')
tfidf_matrix = tf.fit_transform(smd['description'])


# In[22]:


cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)


# In[23]:


smd = smd.reset_index()


# In[24]:


titles = smd['title']
indices = pd.Series(smd.index, index=smd['title'])


# In[25]:


tfidf_matrix.shape


# In[34]:


def get_recommendations(title):
    if indices[title].shape ==():
        idx = indices[title]
    else:
        idx = indices[title][0]
    sim = cosine_sim    
    sim_scores = list(enumerate(sim[idx]))
    sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
    sim_scores = sim_scores[1:5]
    title_idx= [l[0] for l in sim_scores]
    title_rec = [titles[i] for i in title_idx]
    return title_rec


# In[28]:





# In[27]:


#get_recommendations('The Dark Knight',cosine_sim)


# <b> <font size="3"> Adding the metadata to the rec system <font> <b>

# In[42]:


credits = pd.read_csv(path+'/credits.csv')
keywords = pd.read_csv(path+'/keywords.csv')


# In[43]:


keywords['id'] = keywords['id'].astype('int')
credits['id'] = credits['id'].astype('int')
md['id'] = md['id'].astype('int')


# In[44]:


md = md.merge(credits, on = 'id')
md = md.merge(keywords, on = 'id')
smd = md[md['id'].isin(links)]


# In[45]:


#smd.shape


# In[46]:


smd['cast'] = smd['cast'].apply(literal_eval)
smd['crew'] = smd['crew'].apply(literal_eval)
smd['keywords'] = smd['keywords'].apply(literal_eval)
smd['cast_size'] = smd['cast'].apply(lambda x: len(x))
smd['crew_size'] = smd['crew'].apply(lambda x: len(x))


# In[47]:


def get_director(x):
    for i in x:
        if i['job'] == 'Director':
            return i['name']
    return np.nan


# In[48]:


smd['director'] = smd['crew'].apply(get_director)
smd['cast'] = smd['cast'].apply(lambda x: [i['name'] for i in x] if isinstance(x,list) else [])
smd['cast'] = smd['cast'].apply(lambda x: x[:3] if len(x)>=3 else x)


# In[49]:


smd['keywords'] = smd['keywords'].apply(lambda x: [i['name'] for i in x] if isinstance(x,list) else [])


# In[50]:


smd['cast'] = smd['cast'].apply(lambda x: [str.lower(i.replace(" ","")) for i in x])


# In[51]:


smd['director'] = smd['director'].astype('str').apply(lambda x: str.lower(x.replace(" ", "")))
smd['director'] = smd['director'].apply(lambda x: [x,x, x])
# we mentioned director 3 times to give it more weight


# In[52]:


s = smd.apply(lambda x: pd.Series(x['keywords']),axis=1).stack().reset_index(level=1, drop=True)
s.name = 'keyword'
s=s.value_counts()
s = s[s>1]


# In[53]:


stemmer = SnowballStemmer('english')


# In[54]:


stemmer.stem('')


# In[55]:


smd['keywords'] = smd['keywords'].apply(lambda x: [i for i in x if i in s])
smd['keywords'] = smd['keywords'].apply(lambda x: [stemmer.stem(i) for i in x])
smd['keywords'] = smd['keywords'].apply(lambda x: [str.lower(i.replace(" ","")) for i in x])


# In[56]:


smd['soup'] = smd['keywords'] + smd['cast'] + smd['director'] + smd['genres']
smd['soup'] = smd['soup'].apply(lambda x: ' '.join(x))


# In[57]:


count = CountVectorizer(analyzer = 'word', ngram_range = (1,2), min_df = 0, stop_words = 'english')
count_matrix = count.fit_transform(smd['soup'])


# In[58]:


cosine_sim2 = linear_kernel(count_matrix, count_matrix)


# In[59]:


smd = smd.reset_index()
titles = smd['title']
indices = pd.Series(smd.index, index=smd['title'])


# In[45]:


#cosine_sim2.shape


# In[60]:


def get_recommendations(title,sim):
    if indices[title].shape ==():
        idx = indices[title]
    else:
        idx = indices[title][0]
    sim_scores = list(enumerate(sim[idx]))
    sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
    sim_scores = sim_scores[1:31]
    title_idx= [l[0] for l in sim_scores]
    title_rec = [titles[i] for i in title_idx]
    return title_rec


# In[62]:


#get_recommendations('The Avengers',cosine_sim2)


# <font size="3"> This recommendation system works a lot better than the first, but it doesn't take popularity into account. <font>

# In[75]:


def improved_recommendations(title):
    idx = indices[title]
    sim_scores = list(enumerate(cosine_sim2[idx]))
    sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
    sim_scores = sim_scores[1:26]
    movie_indices = [i[0] for i in sim_scores]
    
    movies = smd.iloc[movie_indices][['title', 'vote_count', 'vote_average', 'year']]
    vote_counts = movies[movies['vote_count'].notnull()]['vote_count'].astype('int')
    vote_averages = movies[movies['vote_average'].notnull()]['vote_average'].astype('int')
    C = vote_averages.mean()
    m = vote_counts.quantile(0.60)
    qualified = movies[(movies['vote_count'] >= m) & (movies['vote_count'].notnull()) & (movies['vote_average'].notnull())]
    qualified['vote_count'] = qualified['vote_count'].astype('int')
    qualified['vote_average'] = qualified['vote_average'].astype('int')
    qualified['wr'] = qualified.apply(weighted_rating, axis=1)
    qualified = qualified.sort_values('wr', ascending=False).head(10)
    return list(qualified['title'])


# In[76]:


#list(improved_recommendations('Mean Girls'))


# In[81]:


iface = gr.Interface(fn=improved_recommendations, title= "Enter movie title for recommendations",inputs="text", outputs=["text",'text','text','text',"text",'text','text','text'], examples = ['The Dark Knight', 'Mean Girls', 'Avatar','The Godfather', 'Top Gun', 'Toy Story'])
iface.launch()


# In[83]: