Spaces:
Runtime error
Runtime error
File size: 10,637 Bytes
d170d9a adeb36a d170d9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
#from scipy import stats
from ast import literal_eval
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import wordnet
from surprise import Reader, Dataset, SVD
import warnings; warnings.simplefilter('ignore')
import surprise
# In[3]:
path = 'C:/HW/Spring 2022/Deep learning/Project/all csvs'
# In[4]:
md = pd.read_csv(path+'/movies_metadata.csv')
md.head(2)
# <b> Simple rec system <b>
#
# In[5]:
md['genres'] = md['genres'].fillna('[]').apply(literal_eval).apply(lambda x: [i['name'] for i in x] if isinstance(x, list) else [])
# fillna replaces NaN values with '[]'
# Get just the genres
# Weighted Rating (WR) = (v/(v+m)*R)+(m/(v+m).C)
#
# where,
#
# [1] v is the number of votes for the movie <br>
# [2] m is the minimum votes required to be listed in the chart <br>
# [3] R is the average rating of the movie <br>
# [4] C is the mean vote across the whole report <br>
# In[6]:
vote_counts = md[md['vote_count'].notnull()]['vote_count'].astype(int)
vote_average = md[md['vote_average'].notnull()]['vote_average'].astype(int)
C = np.mean(vote_average)
m = vote_counts.quantile(0.95)
print('The average rating for these movies is: ',C)
print('The minimum votes required to be listed in the chart: ',m)
# In[7]:
# Keeping the year from the date
md['year'] = pd.to_datetime(md['release_date'], errors='coerce').apply(lambda x: str(x).split('-')[0] if x != np.nan else np.nan)
# In[8]:
md['popularity']
# In[9]:
qualified = md[(md['vote_count'] >= m) & (md['vote_count'].notnull()) & (md['vote_average'].notnull())][['title', 'year', 'vote_count', 'vote_average', 'popularity', 'genres']]
# In[10]:
qualified['vote_count'] = qualified['vote_count'].astype(int)
qualified['vote_average'] = qualified['vote_average'].astype(int)
qualified.shape
# In[11]:
def weighted_rating(x):
v = x['vote_count']
R = x['vote_average']
return (v/(v+m) * R) + (m/(m+v) * C)
# In[12]:
qualified['wr'] = qualified.apply(weighted_rating, axis=1)
qualified = qualified.sort_values('wr',ascending = False).head(250)
# In[13]:
s = md.apply(lambda x: pd.Series(x['genres']),axis=1).stack().reset_index(level=1, drop=True)
s.name = 'genre'
gen_md = md.drop('genres', axis=1).join(s)
# In[14]:
def build_chart(genre, percentile=0.85):
df = gen_md[gen_md['genre'] == genre] # Getting gen_md for specific genres
vote_counts = df[df['vote_count'].notnull()]['vote_count'].astype('int')
vote_averages = df[df['vote_average'].notnull()]['vote_average'].astype('int')
C = vote_averages.mean()
m = vote_counts.quantile(percentile)
qualified = df[(df['vote_count'] >= m) & (df['vote_count'].notnull()) & (df['vote_average'].notnull())][['title', 'year', 'vote_count', 'vote_average', 'popularity']]
qualified['vote_count'] = qualified['vote_count'].astype('int')
qualified['vote_average'] = qualified['vote_average'].astype('int')
qualified['wr'] = qualified.apply(lambda x: (x['vote_count']/(x['vote_count']+m) * x['vote_average']) + (m/(m+x['vote_count']) * C), axis=1)
qualified = qualified.sort_values('wr', ascending=False).head(250)
return qualified
# In[15]:
build_chart('Romance')
# <b> Content Based Recommender/ Filtering <b>
#
# In this section we personalize the movie recommendations, Content Based Recommenders based on:
#
# Movie Overviews and Taglines <br>
# Movie Cast, Crew, Keywords and Genre
#
# In[16]:
links = pd.read_csv(path+'/links_small.csv')
links = links[links['tmdbId'].notnull()]['tmdbId'].astype(int)
# In[17]:
md = md.drop([19730, 29503, 35587])
# In[18]:
md['id'] = md['id'].astype('int')
# In[19]:
# Getting the movies that their IDs exist in "links"
smd = md[md['id'].isin(links)]
smd.shape
# In[20]:
smd['tagline'] = smd['tagline'].fillna('')
smd['description'] = smd['overview'] + smd['tagline']
smd['description'] = smd['description'].fillna('')
# <b><font size="3"> This is where things gets exciting!!!!!!!!!<font> <b>
#
# [1] Convert a collection of raw documents to a matrix of TF-IDF features -- TF-IDF: term frequency–inverse document frequency <br>
# <b>how many times a word appears in a document, and the inverse document frequency of the word across a set of documents?<b> <br>
#
# [2] ngram_range: All values of n such that min_n <= n <= max_n will be used. For example an ngram_range of (1, 1) means only unigrams, (1, 2) means unigrams and bigrams, So we're using both unigrams and bigrams <br>
#
# [3] A 1-gram (or unigram) is a one-word sequence. ... A 2-gram (or bigram) is a two-word sequence of words, like “I love”, “love reading”, or “Analytics Vidhya”. And a 3-gram (or trigram) is a three-word sequence of words like “I love reading”
# In[21]:
tf = TfidfVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, stop_words='english')
tfidf_matrix = tf.fit_transform(smd['description'])
# In[22]:
cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)
# In[23]:
smd = smd.reset_index()
# In[24]:
titles = smd['title']
indices = pd.Series(smd.index, index=smd['title'])
# In[25]:
tfidf_matrix.shape
# In[34]:
def get_recommendations(title):
if indices[title].shape ==():
idx = indices[title]
else:
idx = indices[title][0]
sim = cosine_sim
sim_scores = list(enumerate(sim[idx]))
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
sim_scores = sim_scores[1:5]
title_idx= [l[0] for l in sim_scores]
title_rec = [titles[i] for i in title_idx]
return title_rec
# In[28]:
def greet(name):
return "Hello " + name + "!!"
# In[27]:
get_recommendations('The Dark Knight',cosine_sim)
# <b> <font size="3"> Adding the metadata to the rec system <font> <b>
# In[42]:
credits = pd.read_csv(path+'/credits.csv')
keywords = pd.read_csv(path+'/keywords.csv')
# In[43]:
keywords['id'] = keywords['id'].astype('int')
credits['id'] = credits['id'].astype('int')
md['id'] = md['id'].astype('int')
# In[44]:
md = md.merge(credits, on = 'id')
md = md.merge(keywords, on = 'id')
smd = md[md['id'].isin(links)]
# In[45]:
smd.shape
# In[46]:
smd['cast'] = smd['cast'].apply(literal_eval)
smd['crew'] = smd['crew'].apply(literal_eval)
smd['keywords'] = smd['keywords'].apply(literal_eval)
smd['cast_size'] = smd['cast'].apply(lambda x: len(x))
smd['crew_size'] = smd['crew'].apply(lambda x: len(x))
# In[47]:
def get_director(x):
for i in x:
if i['job'] == 'Director':
return i['name']
return np.nan
# In[48]:
smd['director'] = smd['crew'].apply(get_director)
smd['cast'] = smd['cast'].apply(lambda x: [i['name'] for i in x] if isinstance(x,list) else [])
smd['cast'] = smd['cast'].apply(lambda x: x[:3] if len(x)>=3 else x)
# In[49]:
smd['keywords'] = smd['keywords'].apply(lambda x: [i['name'] for i in x] if isinstance(x,list) else [])
# In[50]:
smd['cast'] = smd['cast'].apply(lambda x: [str.lower(i.replace(" ","")) for i in x])
# In[51]:
smd['director'] = smd['director'].astype('str').apply(lambda x: str.lower(x.replace(" ", "")))
smd['director'] = smd['director'].apply(lambda x: [x,x, x])
# we mentioned director 3 times to give it more weight
# In[52]:
s = smd.apply(lambda x: pd.Series(x['keywords']),axis=1).stack().reset_index(level=1, drop=True)
s.name = 'keyword'
s=s.value_counts()
s = s[s>1]
# In[53]:
stemmer = SnowballStemmer('english')
# In[54]:
stemmer.stem('')
# In[55]:
smd['keywords'] = smd['keywords'].apply(lambda x: [i for i in x if i in s])
smd['keywords'] = smd['keywords'].apply(lambda x: [stemmer.stem(i) for i in x])
smd['keywords'] = smd['keywords'].apply(lambda x: [str.lower(i.replace(" ","")) for i in x])
# In[56]:
smd['soup'] = smd['keywords'] + smd['cast'] + smd['director'] + smd['genres']
smd['soup'] = smd['soup'].apply(lambda x: ' '.join(x))
# In[57]:
count = CountVectorizer(analyzer = 'word', ngram_range = (1,2), min_df = 0, stop_words = 'english')
count_matrix = count.fit_transform(smd['soup'])
# In[58]:
cosine_sim2 = linear_kernel(count_matrix, count_matrix)
# In[59]:
smd = smd.reset_index()
titles = smd['title']
indices = pd.Series(smd.index, index=smd['title'])
# In[45]:
cosine_sim2.shape
# In[60]:
def get_recommendations(title,sim):
if indices[title].shape ==():
idx = indices[title]
else:
idx = indices[title][0]
sim_scores = list(enumerate(sim[idx]))
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
sim_scores = sim_scores[1:31]
title_idx= [l[0] for l in sim_scores]
title_rec = [titles[i] for i in title_idx]
return title_rec
# In[62]:
get_recommendations('The Avengers',cosine_sim2)
# <font size="3"> This recommendation system works a lot better than the first, but it doesn't take popularity into account. <font>
# In[75]:
def improved_recommendations(title):
idx = indices[title]
sim_scores = list(enumerate(cosine_sim2[idx]))
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
sim_scores = sim_scores[1:26]
movie_indices = [i[0] for i in sim_scores]
movies = smd.iloc[movie_indices][['title', 'vote_count', 'vote_average', 'year']]
vote_counts = movies[movies['vote_count'].notnull()]['vote_count'].astype('int')
vote_averages = movies[movies['vote_average'].notnull()]['vote_average'].astype('int')
C = vote_averages.mean()
m = vote_counts.quantile(0.60)
qualified = movies[(movies['vote_count'] >= m) & (movies['vote_count'].notnull()) & (movies['vote_average'].notnull())]
qualified['vote_count'] = qualified['vote_count'].astype('int')
qualified['vote_average'] = qualified['vote_average'].astype('int')
qualified['wr'] = qualified.apply(weighted_rating, axis=1)
qualified = qualified.sort_values('wr', ascending=False).head(10)
return list(qualified['title'])
# In[76]:
list(improved_recommendations('Mean Girls'))
# In[81]:
iface = gr.Interface(fn=improved_recommendations, title= "Enter movie title for recommendations",inputs="text", outputs=["text",'text','text','text',"text",'text','text','text'], examples = ['The Dark Knight', 'Mean Girls', 'Avatar','The Godfather', 'Top Gun', 'Toy Story'])
iface.launch(share=True)
# In[83]:
|