|
"""Anchor utils modified from https://github.com/biubug6/Pytorch_Retinaface""" |
|
import math |
|
import tensorflow as tf |
|
import numpy as np |
|
from itertools import product as product |
|
|
|
|
|
|
|
|
|
|
|
def prior_box(image_sizes, min_sizes, steps, clip=False): |
|
"""prior box""" |
|
feature_maps = [ |
|
[math.ceil(image_sizes[0] / step), math.ceil(image_sizes[1] / step)] |
|
for step in steps] |
|
|
|
anchors = [] |
|
for k, f in enumerate(feature_maps): |
|
for i, j in product(range(f[0]), range(f[1])): |
|
for min_size in min_sizes[k]: |
|
s_kx = min_size / image_sizes[1] |
|
s_ky = min_size / image_sizes[0] |
|
cx = (j + 0.5) * steps[k] / image_sizes[1] |
|
cy = (i + 0.5) * steps[k] / image_sizes[0] |
|
anchors += [cx, cy, s_kx, s_ky] |
|
|
|
output = np.asarray(anchors).reshape([-1, 4]) |
|
|
|
if clip: |
|
output = np.clip(output, 0, 1) |
|
|
|
return output |
|
|
|
|
|
def prior_box_tf(image_sizes, min_sizes, steps, clip=False): |
|
"""prior box""" |
|
image_sizes = tf.cast(tf.convert_to_tensor(image_sizes), tf.float32) |
|
feature_maps = tf.math.ceil( |
|
tf.reshape(image_sizes, [1, 2]) / |
|
tf.reshape(tf.cast(steps, tf.float32), [-1, 1])) |
|
|
|
anchors = [] |
|
for k in range(len(min_sizes)): |
|
grid_x, grid_y = _meshgrid_tf(tf.range(feature_maps[k][1]), |
|
tf.range(feature_maps[k][0])) |
|
cx = (grid_x + 0.5) * steps[k] / image_sizes[1] |
|
cy = (grid_y + 0.5) * steps[k] / image_sizes[0] |
|
cxcy = tf.stack([cx, cy], axis=-1) |
|
cxcy = tf.reshape(cxcy, [-1, 2]) |
|
cxcy = tf.repeat(cxcy, repeats=tf.shape(min_sizes[k])[0], axis=0) |
|
|
|
sx = min_sizes[k] / image_sizes[1] |
|
sy = min_sizes[k] / image_sizes[0] |
|
sxsy = tf.stack([sx, sy], 1) |
|
sxsy = tf.repeat(sxsy[tf.newaxis], |
|
repeats=tf.shape(grid_x)[0] * tf.shape(grid_x)[1], |
|
axis=0) |
|
sxsy = tf.reshape(sxsy, [-1, 2]) |
|
|
|
anchors.append(tf.concat([cxcy, sxsy], 1)) |
|
|
|
output = tf.concat(anchors, axis=0) |
|
|
|
if clip: |
|
output = tf.clip_by_value(output, 0, 1) |
|
|
|
return output |
|
|
|
|
|
def _meshgrid_tf(x, y): |
|
""" workaround solution of the tf.meshgrid() issue: |
|
https://github.com/tensorflow/tensorflow/issues/34470""" |
|
grid_shape = [tf.shape(y)[0], tf.shape(x)[0]] |
|
grid_x = tf.broadcast_to(tf.reshape(x, [1, -1]), grid_shape) |
|
grid_y = tf.broadcast_to(tf.reshape(y, [-1, 1]), grid_shape) |
|
return grid_x, grid_y |
|
|
|
|
|
|
|
|
|
|
|
def encode_tf(labels, priors, match_thresh, ignore_thresh, |
|
variances=[0.1, 0.2]): |
|
"""tensorflow encoding""" |
|
assert ignore_thresh <= match_thresh |
|
priors = tf.cast(priors, tf.float32) |
|
bbox = labels[:, :4] |
|
landm = labels[:, 4:-1] |
|
landm_valid = labels[:, -1] |
|
|
|
|
|
overlaps = _jaccard(bbox, _point_form(priors)) |
|
|
|
|
|
|
|
best_prior_overlap, best_prior_idx = tf.math.top_k(overlaps, k=1) |
|
best_prior_overlap = best_prior_overlap[:, 0] |
|
best_prior_idx = best_prior_idx[:, 0] |
|
|
|
|
|
overlaps_t = tf.transpose(overlaps) |
|
best_truth_overlap, best_truth_idx = tf.math.top_k(overlaps_t, k=1) |
|
best_truth_overlap = best_truth_overlap[:, 0] |
|
best_truth_idx = best_truth_idx[:, 0] |
|
|
|
|
|
def _loop_body(i, bt_idx, bt_overlap): |
|
bp_mask = tf.one_hot(best_prior_idx[i], tf.shape(bt_idx)[0]) |
|
bp_mask_int = tf.cast(bp_mask, tf.int32) |
|
new_bt_idx = bt_idx * (1 - bp_mask_int) + bp_mask_int * i |
|
bp_mask_float = tf.cast(bp_mask, tf.float32) |
|
new_bt_overlap = bt_overlap * (1 - bp_mask_float) + bp_mask_float * 2 |
|
return tf.cond(best_prior_overlap[i] > match_thresh, |
|
lambda: (i + 1, new_bt_idx, new_bt_overlap), |
|
lambda: (i + 1, bt_idx, bt_overlap)) |
|
_, best_truth_idx, best_truth_overlap = tf.while_loop( |
|
lambda i, bt_idx, bt_overlap: tf.less(i, tf.shape(best_prior_idx)[0]), |
|
_loop_body, [tf.constant(0), best_truth_idx, best_truth_overlap]) |
|
|
|
matches_bbox = tf.gather(bbox, best_truth_idx) |
|
matches_landm = tf.gather(landm, best_truth_idx) |
|
matches_landm_v = tf.gather(landm_valid, best_truth_idx) |
|
|
|
loc_t = _encode_bbox(matches_bbox, priors, variances) |
|
landm_t = _encode_landm(matches_landm, priors, variances) |
|
landm_valid_t = tf.cast(matches_landm_v > 0, tf.float32) |
|
conf_t = tf.cast(best_truth_overlap > match_thresh, tf.float32) |
|
conf_t = tf.where( |
|
tf.logical_and(best_truth_overlap < match_thresh, |
|
best_truth_overlap > ignore_thresh), |
|
tf.ones_like(conf_t) * -1, conf_t) |
|
|
|
return tf.concat([loc_t, landm_t, landm_valid_t[..., tf.newaxis], |
|
conf_t[..., tf.newaxis]], axis=1) |
|
|
|
|
|
def _encode_bbox(matched, priors, variances): |
|
"""Encode the variances from the priorbox layers into the ground truth |
|
boxes we have matched (based on jaccard overlap) with the prior boxes. |
|
Args: |
|
matched: (tensor) Coords of ground truth for each prior in point-form |
|
Shape: [num_priors, 4]. |
|
priors: (tensor) Prior boxes in center-offset form |
|
Shape: [num_priors,4]. |
|
variances: (list[float]) Variances of priorboxes |
|
Return: |
|
encoded boxes (tensor), Shape: [num_priors, 4] |
|
""" |
|
|
|
|
|
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2] |
|
|
|
g_cxcy /= (variances[0] * priors[:, 2:]) |
|
|
|
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] |
|
g_wh = tf.math.log(g_wh) / variances[1] |
|
|
|
return tf.concat([g_cxcy, g_wh], 1) |
|
|
|
|
|
def _encode_landm(matched, priors, variances): |
|
"""Encode the variances from the priorbox layers into the ground truth |
|
boxes we have matched (based on jaccard overlap) with the prior boxes. |
|
Args: |
|
matched: (tensor) Coords of ground truth for each prior in point-form |
|
Shape: [num_priors, 10]. |
|
priors: (tensor) Prior boxes in center-offset form |
|
Shape: [num_priors,4]. |
|
variances: (list[float]) Variances of priorboxes |
|
Return: |
|
encoded landm (tensor), Shape: [num_priors, 10] |
|
""" |
|
|
|
|
|
matched = tf.reshape(matched, [tf.shape(matched)[0], 5, 2]) |
|
priors = tf.broadcast_to( |
|
tf.expand_dims(priors, 1), [tf.shape(matched)[0], 5, 4]) |
|
g_cxcy = matched[:, :, :2] - priors[:, :, :2] |
|
|
|
g_cxcy /= (variances[0] * priors[:, :, 2:]) |
|
|
|
g_cxcy = tf.reshape(g_cxcy, [tf.shape(g_cxcy)[0], -1]) |
|
|
|
return g_cxcy |
|
|
|
|
|
def _point_form(boxes): |
|
""" Convert prior_boxes to (xmin, ymin, xmax, ymax) |
|
representation for comparison to point form ground truth data. |
|
Args: |
|
boxes: (tensor) center-size default boxes from priorbox layers. |
|
Return: |
|
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. |
|
""" |
|
return tf.concat((boxes[:, :2] - boxes[:, 2:] / 2, |
|
boxes[:, :2] + boxes[:, 2:] / 2), axis=1) |
|
|
|
|
|
def _intersect(box_a, box_b): |
|
""" We resize both tensors to [A,B,2]: |
|
[A,2] -> [A,1,2] -> [A,B,2] |
|
[B,2] -> [1,B,2] -> [A,B,2] |
|
Then we compute the area of intersect between box_a and box_b. |
|
Args: |
|
box_a: (tensor) bounding boxes, Shape: [A,4]. |
|
box_b: (tensor) bounding boxes, Shape: [B,4]. |
|
Return: |
|
(tensor) intersection area, Shape: [A,B]. |
|
""" |
|
A = tf.shape(box_a)[0] |
|
B = tf.shape(box_b)[0] |
|
max_xy = tf.minimum( |
|
tf.broadcast_to(tf.expand_dims(box_a[:, 2:], 1), [A, B, 2]), |
|
tf.broadcast_to(tf.expand_dims(box_b[:, 2:], 0), [A, B, 2])) |
|
min_xy = tf.maximum( |
|
tf.broadcast_to(tf.expand_dims(box_a[:, :2], 1), [A, B, 2]), |
|
tf.broadcast_to(tf.expand_dims(box_b[:, :2], 0), [A, B, 2])) |
|
inter = tf.maximum((max_xy - min_xy), tf.zeros_like(max_xy - min_xy)) |
|
return inter[:, :, 0] * inter[:, :, 1] |
|
|
|
|
|
def _jaccard(box_a, box_b): |
|
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap |
|
is simply the intersection over union of two boxes. Here we operate on |
|
ground truth boxes and default boxes. |
|
E.g.: |
|
A β© B / A βͺ B = A β© B / (area(A) + area(B) - A β© B) |
|
Args: |
|
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4] |
|
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4] |
|
Return: |
|
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)] |
|
""" |
|
inter = _intersect(box_a, box_b) |
|
area_a = tf.broadcast_to( |
|
tf.expand_dims( |
|
(box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1]), 1), |
|
tf.shape(inter)) |
|
area_b = tf.broadcast_to( |
|
tf.expand_dims( |
|
(box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1]), 0), |
|
tf.shape(inter)) |
|
union = area_a + area_b - inter |
|
return inter / union |
|
|
|
|
|
|
|
|
|
|
|
def decode_tf(labels, priors, variances=[0.1, 0.2]): |
|
"""tensorflow decoding""" |
|
bbox = _decode_bbox(labels[:, :4], priors, variances) |
|
landm = _decode_landm(labels[:, 4:14], priors, variances) |
|
landm_valid = labels[:, 14][:, tf.newaxis] |
|
conf = labels[:, 15][:, tf.newaxis] |
|
|
|
return tf.concat([bbox, landm, landm_valid, conf], axis=1) |
|
|
|
|
|
def _decode_bbox(pre, priors, variances=[0.1, 0.2]): |
|
"""Decode locations from predictions using priors to undo |
|
the encoding we did for offset regression at train time. |
|
Args: |
|
pre (tensor): location predictions for loc layers, |
|
Shape: [num_priors,4] |
|
priors (tensor): Prior boxes in center-offset form. |
|
Shape: [num_priors,4]. |
|
variances: (list[float]) Variances of priorboxes |
|
Return: |
|
decoded bounding box predictions |
|
""" |
|
centers = priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:] |
|
sides = priors[:, 2:] * tf.math.exp(pre[:, 2:] * variances[1]) |
|
|
|
return tf.concat([centers - sides / 2, centers + sides / 2], axis=1) |
|
|
|
|
|
def _decode_landm(pre, priors, variances=[0.1, 0.2]): |
|
"""Decode landm from predictions using priors to undo |
|
the encoding we did for offset regression at train time. |
|
Args: |
|
pre (tensor): landm predictions for loc layers, |
|
Shape: [num_priors,10] |
|
priors (tensor): Prior boxes in center-offset form. |
|
Shape: [num_priors,4]. |
|
variances: (list[float]) Variances of priorboxes |
|
Return: |
|
decoded landm predictions |
|
""" |
|
landms = tf.concat( |
|
[priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:], |
|
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:], |
|
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:], |
|
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:], |
|
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:]], axis=1) |
|
return landms |