Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,10 +11,10 @@ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
|
11 |
sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
12 |
|
13 |
# Streamlit UI
|
14 |
-
st.title("GPT-2 Movie
|
15 |
|
16 |
# Input text for sentiment analysis
|
17 |
-
input_text = st.text_area("Enter movie
|
18 |
|
19 |
# Choose analysis type
|
20 |
analysis_type = st.radio("Select analysis type:", ["Zero-shot", "One-shot", "Few-shot"])
|
@@ -24,15 +24,20 @@ if st.button("Analyze Sentiment"):
|
|
24 |
if analysis_type == "Zero-shot":
|
25 |
results = sentiment_analysis(input_text)
|
26 |
elif analysis_type == "One-shot":
|
27 |
-
|
28 |
-
|
29 |
-
results = sentiment_analysis(input_text)
|
30 |
elif analysis_type == "Few-shot":
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Display results
|
35 |
st.write("Sentiment:", results[0]['label'])
|
36 |
st.write("Confidence:", results[0]['score'])
|
37 |
|
38 |
-
# Note: This is a basic example, and you might need to fine-tune it based on your specific use case and requirements.
|
|
|
11 |
sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
12 |
|
13 |
# Streamlit UI
|
14 |
+
st.title("GPT-2 Movie Sentiment Analysis")
|
15 |
|
16 |
# Input text for sentiment analysis
|
17 |
+
input_text = st.text_area("Enter movie sentiment:", "")
|
18 |
|
19 |
# Choose analysis type
|
20 |
analysis_type = st.radio("Select analysis type:", ["Zero-shot", "One-shot", "Few-shot"])
|
|
|
24 |
if analysis_type == "Zero-shot":
|
25 |
results = sentiment_analysis(input_text)
|
26 |
elif analysis_type == "One-shot":
|
27 |
+
# Use the input text as the single example
|
28 |
+
results = sentiment_analysis(f"This movie is about {input_text}")
|
|
|
29 |
elif analysis_type == "Few-shot":
|
30 |
+
# Use multiple examples for few-shot analysis
|
31 |
+
examples = [
|
32 |
+
f"This movie sets an example of bad ethics. {input_text}",
|
33 |
+
f"I loved this movie. {input_text}",
|
34 |
+
f"The movie is neither good nor bad. {input_text}"
|
35 |
+
]
|
36 |
+
input_text = " ".join(examples)
|
37 |
+
results = sentiment_analysis(input_text)
|
38 |
|
39 |
# Display results
|
40 |
st.write("Sentiment:", results[0]['label'])
|
41 |
st.write("Confidence:", results[0]['score'])
|
42 |
|
43 |
+
# Note: This is a basic example, and you might need to fine-tune it based on your specific use case and requirements.
|