adi-123 commited on
Commit
d81f4dd
1 Parent(s): 837232b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -8
app.py CHANGED
@@ -14,7 +14,7 @@ sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=token
14
  st.title("GPT-2 Movie Sentiment Analysis")
15
 
16
  # Input text for sentiment analysis
17
- input_text = st.text_area("Enter movie sentiment:", "")
18
 
19
  # Choose analysis type
20
  analysis_type = st.radio("Select analysis type:", ["Zero-shot", "One-shot", "Few-shot"])
@@ -22,18 +22,23 @@ analysis_type = st.radio("Select analysis type:", ["Zero-shot", "One-shot", "Few
22
  if st.button("Analyze Sentiment"):
23
  # Perform sentiment analysis based on the selected type
24
  if analysis_type == "Zero-shot":
 
 
25
  results = sentiment_analysis(input_text)
26
  elif analysis_type == "One-shot":
27
- # Use the input text as the single example
28
- results = sentiment_analysis(f"This movie is about {input_text}")
 
 
29
  elif analysis_type == "Few-shot":
30
- # Use multiple examples for few-shot analysis
31
  examples = [
32
- f"This movie sets an example of bad ethics. {input_text}",
33
- f"I loved this movie. {input_text}",
34
- f"The movie is neither good nor bad. {input_text}"
 
35
  ]
36
- input_text = " ".join(examples)
 
37
  results = sentiment_analysis(input_text)
38
 
39
  # Display results
 
14
  st.title("GPT-2 Movie Sentiment Analysis")
15
 
16
  # Input text for sentiment analysis
17
+ input_text = st.text_area("Enter movie review:", "")
18
 
19
  # Choose analysis type
20
  analysis_type = st.radio("Select analysis type:", ["Zero-shot", "One-shot", "Few-shot"])
 
22
  if st.button("Analyze Sentiment"):
23
  # Perform sentiment analysis based on the selected type
24
  if analysis_type == "Zero-shot":
25
+ prompt = "Label the text as either 'positive', 'negative', or 'mixed' related to a movie:"
26
+ input_text = prompt + "\n\n" + input_text
27
  results = sentiment_analysis(input_text)
28
  elif analysis_type == "One-shot":
29
+ prompt = "Label the sentence as either 'positive', 'negative', or 'mixed' related to a movie:\n\n" \
30
+ "Sentence: This movie exceeded my expectations.\nLabel: positive"
31
+ input_text = prompt + " " + input_text
32
+ results = sentiment_analysis(input_text)
33
  elif analysis_type == "Few-shot":
 
34
  examples = [
35
+ "Sentence: The cinematography in this movie is outstanding.\nLabel: positive",
36
+ "Sentence: I didn't enjoy the plot twists in the movie.\nLabel: negative",
37
+ "Sentence: The acting was great, but the pacing felt off.\nLabel: mixed",
38
+ "Sentence: This movie didn't live up to the hype.\nLabel: negative",
39
  ]
40
+ prompt = "Label the sentences as either 'positive', 'negative', or 'mixed' related to a movie:\n\n" + "\n".join(examples)
41
+ input_text = prompt + "\n\n" + input_text
42
  results = sentiment_analysis(input_text)
43
 
44
  # Display results