stylemc-demo / find_direction.py
adirik's picture
update app
1c472db
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generate images using pretrained network pickle."""
import math
import legacy
import clip
import dnnlib
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms import Compose, Resize, CenterCrop
from PIL import Image
from torch_utils import misc
from torch_utils.ops import upfirdn2d
import id_loss
from copy import deepcopy
def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None, **layer_kwargs):
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
w_iter = iter(ws.unbind(dim=1))
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
if fused_modconv is None:
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1)
# Input.
if self.in_channels == 0:
x = self.const.to(dtype=dtype, memory_format=memory_format)
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
else:
misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2])
x = x.to(dtype=dtype, memory_format=memory_format)
# Main layers.
if self.in_channels == 0:
x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs)
elif self.architecture == 'resnet':
y = self.skip(x, gain=np.sqrt(0.5))
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
x = y.add_(x)
else:
x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs)
x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs)
# ToRGB.
if img is not None:
misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2])
img = upfirdn2d.upsample2d(img, self.resample_filter)
if self.is_last or self.architecture == 'skip':
y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv)
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
img = img.add_(y) if img is not None else y
assert x.dtype == dtype
assert img is None or img.dtype == torch.float32
return x, img
def unravel_index(index, shape):
out = []
for dim in reversed(shape):
out.append(index % dim)
index = index // dim
return tuple(reversed(out))
def find_direction(
GIn,
text_prompt: str,
truncation_psi: float = 0.7,
noise_mode: str = "const",
resolution: int = 256,
identity_power: float = 0.5,
):
G = deepcopy(GIn)
seeds=np.random.randint(0, 1000, 128)
batch_size=1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Labels
class_idx=None
label = torch.zeros([1, G.c_dim], device=device).requires_grad_()
if G.c_dim != 0:
label[:, class_idx] = 1
model, preprocess = clip.load("ViT-B/32", device=device)
text = clip.tokenize([text_prompt]).to(device)
text_features = model.encode_text(text)
# Generate images
for i in G.parameters():
i.requires_grad = True
mean = torch.as_tensor((0.48145466, 0.4578275, 0.40821073), dtype=torch.float, device=device)
std = torch.as_tensor((0.26862954, 0.26130258, 0.27577711), dtype=torch.float, device=device)
if mean.ndim == 1:
mean = mean.view(-1, 1, 1)
if std.ndim == 1:
std = std.view(-1, 1, 1)
transf = Compose([Resize(224, interpolation=Image.BICUBIC), CenterCrop(224)])
styles_array = []
for seed_idx, seed in enumerate(seeds):
if seed == seeds[-1]:
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device)
ws = G.mapping(z, label, truncation_psi=truncation_psi)
block_ws = []
with torch.autograd.profiler.record_function('split_ws'):
misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim])
ws = ws.to(torch.float32)
w_idx = 0
for res in G.synthesis.block_resolutions:
block = getattr(G.synthesis, f'b{res}')
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
w_idx += block.num_conv
styles = torch.zeros(1, 26, 512, device=device)
styles_idx = 0
temp_shapes = []
for res, cur_ws in zip(G.synthesis.block_resolutions, block_ws):
block = getattr(G.synthesis, f'b{res}')
if res == 4:
temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0])
styles[0, :1, :] = block.conv1.affine(cur_ws[0, :1, :])
styles[0, 1:2, :] = block.torgb.affine(cur_ws[0, 1:2, :])
if seed_idx == (len(seeds) - 1):
block.conv1.affine = torch.nn.Identity()
block.torgb.affine = torch.nn.Identity()
styles_idx += 2
else:
temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0])
styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:])
styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:])
styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:])
if seed_idx == (len(seeds) - 1):
block.conv0.affine = torch.nn.Identity()
block.conv1.affine = torch.nn.Identity()
block.torgb.affine = torch.nn.Identity()
styles_idx += 3
temp_shapes.append(temp_shape)
styles = styles.detach()
styles_array.append(styles)
resolution_dict = {256: 6, 512: 7, 1024: 8}
id_coeff = identity_power
styles_direction = torch.zeros(1, 26, 512, device=device)
styles_direction_grad_el2 = torch.zeros(1, 26, 512, device=device)
styles_direction.requires_grad_()
global id_loss2
#id_loss = id_loss.IDLoss("a").to(device).eval()
id_loss2 = id_loss.IDLoss("a").to(device).eval()
temp_photos = []
grads = []
for i in range(math.ceil(len(seeds) / batch_size)):
styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device)
seed = seeds[i]
styles_idx = 0
x2 = img2 = None
for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)):
block = getattr(G.synthesis, f'b{res}')
if k > resolution_dict[resolution]:
continue
if res == 4:
x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 2
else:
x2, img2 = block_forward(block, x2, img2, styles[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 3
img2_cpu = img2.detach().cpu().numpy()
temp_photos.append(img2_cpu)
if i > 3:
continue
styles2 = styles + styles_direction
styles_idx = 0
x = img = None
for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)):
block = getattr(G.synthesis, f'b{res}')
if k > resolution_dict[resolution]:
continue
if res == 4:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 2
else:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 3
identity_loss, _ = id_loss2(img, img2)
identity_loss *= id_coeff
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255)
img = (transf(img.permute(0, 3, 1, 2)) / 255).sub_(mean).div_(std)
image_features = model.encode_image(img)
cos_sim = -1*F.cosine_similarity(image_features, (text_features[0]).unsqueeze(0))
(identity_loss + cos_sim.sum()).backward(retain_graph=True)
styles_direction.grad[:, list(range(26)), :] = 0
with torch.no_grad():
styles_direction *= 0
for i in range(math.ceil(len(seeds) / batch_size)):
seed = seeds[i]
styles = torch.vstack(styles_array[i*batch_size:(i+1)*batch_size]).to(device)
img2 = torch.tensor(temp_photos[i]).to(device)
styles2 = styles + styles_direction
styles_idx = 0
x = img = None
for k, (res, cur_ws) in enumerate(zip(G.synthesis.block_resolutions, block_ws)):
block = getattr(G.synthesis, f'b{res}')
if k > resolution_dict[resolution]:
continue
if res == 4:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+2, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 2
else:
x, img = block_forward(block, x, img, styles2[:, styles_idx:styles_idx+3, :], temp_shapes[k], noise_mode=noise_mode, force_fp32=True)
styles_idx += 3
identity_loss, _ = id_loss2(img, img2)
identity_loss *= id_coeff
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255)
img = (transf(img.permute(0, 3, 1, 2)) / 255).sub_(mean).div_(std)
image_features = model.encode_image(img)
cos_sim = -1*F.cosine_similarity(image_features, (text_features[0]).unsqueeze(0))
(identity_loss + cos_sim.sum()).backward(retain_graph=True)
styles_direction.grad[:, [0, 1, 4, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], :] = 0
if i % 2 == 1:
styles_direction.data = (styles_direction - styles_direction.grad * 5)
grads.append(styles_direction.grad.clone())
styles_direction.grad.data.zero_()
if i > 3:
styles_direction_grad_el2[grads[-2] * grads[-1] < 0] += 1
styles_direction = styles_direction.detach()
styles_direction[styles_direction_grad_el2 > (len(seeds) / batch_size) / 4] = 0
return styles_direction.cpu().numpy()